Skip to main content
Log in

Transverse matrix cracks in cross-ply laminates: Stress transfer, stiffness reduction and crack opening profiles

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Cross-ply laminates with transverse plies containing through-width matrix cracks across the thickness of the transverse plies are studied using an energy-based approach,complementary to that of Hashin. An upper bound on the effective axial stiffness of the cracked laminates with a uniform distribution of transverse cracks is derived. The equations governing the field variables in a typical RVE are derived using thelayerwise laminate theory of Reddy and are solved using the finite element method. The predicted reduction in the effective axial modulus is in good agreement with experimental results, and it approaches a fixed value with increase in crack density for laminates with bothstaggered andnon-staggered cracking. Laminates with staggered cracks showed a greater reduction in effective modulus at lower crack densities. The stress distribution and mechanics of load transfer is examined in detail, at two crack densities including the characteristic damage state. The crack opening profile has been normalized in a special way in terms of the crack density, layup parameters and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrett, K. W., Bailey, J. E.: Multiple transverse fracture in 900 cross-ply laminates of glass fibrereinforced polyester. J. Mater. Sci.12, 157–168 (1977).

    Google Scholar 

  2. Highsmith, A. L., Reifsnider, K. L.: Stiffness reduction mechanisms in composite laminates. Damage in Composite Materials, ASTM STP775, (Reifsnider, K. L., ed.), pp. 103–117. American Society for Testing and Materials 1982.

    Google Scholar 

  3. Flaggs, D. L.: Prediction of tensile matrix failure in composite laminates. J. Comp. Mater.19, 29–50 (1985).

    Google Scholar 

  4. Norman, L., Dvorak, G. J.: Progressive transverse cracking in composite laminates. J. Comp. Mater.22, 900–916 (1988).

    Google Scholar 

  5. Han, Y. M., Hahn, H. T., Croman, R. B.: A simplified analysis of transverse ply cracking in crossply laminates. Comp. Sci. Technol.31, 165–177 (1988).

    Google Scholar 

  6. Lim, S. G., Hong, C. S.: Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites. J. Comp. Mater.23, 695–713 (1989).

    Google Scholar 

  7. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θ m /90 n ] s composite laminates. Part 1: In-plane stiffness properties. Composites23, 291–298 (1992).

    Google Scholar 

  8. Zhang, J., Fan, J., Soutis, C.: Analysis of multiple matrix cracking in [±θ m /90 n ] s composite laminates. Part 2: Development of transverse ply cracks. Composites23, 299–304 (1992).

    Google Scholar 

  9. Lee, J. H., Hong, C. S.: Refined two-dimensional analysis of cross-ply laminates with transverse cracks based on the assumed crack opening displacement. Comp. Sci. Technol.46, 157–166 (1992).

    Google Scholar 

  10. Hashin, Z.: Analysis of cracked laminates: A variational approach. Mech. Mater.4, 121–136 (1985).

    Google Scholar 

  11. Herakovich, C. T., Aboudi, J., Lee, S. W., Strauss, E. A.: Damage in composite laminates: effects of transverse cracks. Mech. Mater.7, 91–107 (1988).

    Google Scholar 

  12. Gudmundson, P., Ostlund, S.: First order analysis of stiffness reduction due to matrix cracking. J. Comp. Mater.26, 1009–1030 (1992).

    Google Scholar 

  13. Gudmundson, P., Zang, W.: An analytical model for thermoelastic properties of composite laminates containing transverse matrix cracks. Int. J. Solids Struct.30, 3211–3231 (1993).

    Google Scholar 

  14. Gudmundson, P., Ostlund, S.: Numerical verification of a procedure for calculation of elastic constants in microcracking composite laminates. J. Comp. Mater.26, 2480–2492 (1992).

    Google Scholar 

  15. Nairn, J. A.: The strain energy release rate of composite microcracking: a variational approach. J. Comp. Mater.23, 1106–1129 (1989).

    Google Scholar 

  16. Varna, J., Berglund, L. A.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J. Comp. Technol. Res.13, 99–106 (1991).

    Google Scholar 

  17. Varna, J., Berglund, L. A.: A model for prediction of the transverse cracking strain in cross-ply laminates. J. Reinforced Plastics Comp.11, 708–728 (1992).

    Google Scholar 

  18. McCartney, L. N.: Theory of stress transfer in a 00-900-00 cross-ply laminate containing a parallel array of transverse cracks. J. Mech. Phys. Solids40, 27–68 (1992).

    Google Scholar 

  19. Talreja, R.: Stiffness properties of composite laminates with matrix cracking and interior delamination. Eng. Fracture Mech.25, 751–762 (1986).

    Google Scholar 

  20. Allen, D. H., Harris, C. E., Groves, S. E.: A thermomechanical constitutive theory for elastic composites with distributed damage—I. Theoretical development. Int. J. Solids Struct.23, 1301–1318 (1987).

    Google Scholar 

  21. Lee, J. W., Allen, D. H., Harris, C. E.: Internal state variable approach for predicting stiffness reductions in fibrous laminated composites with matrix cracks. J. Comp. Mater.23, 1273–1291 (1989).

    Google Scholar 

  22. Reddy, J. N.: A generalization of the two-dimensional theories of laminated composite plates. Comm. Appl. Numer. Methods3, 173–180 (1987).

    Google Scholar 

  23. Robbins, Jr., D. H., Reddy, J. N.: Modelling of thick composites using a layerwise laminate theory. Int. J. Numer. Methods Eng.36, 655–677 (1993).

    Google Scholar 

  24. Barbero, E. J., Reddy, J. N.: Modeling of delamination in composite laminates using a layer-wise plate theory. Int. J. Solids Struct.28, 373–388 (1991).

    Google Scholar 

  25. Reddy, J. N., Robbins, Jr., D. H.: Theories and computational models for composite laminates. Appl. Mech. Rev.47, 147–169 (1994).

    Google Scholar 

  26. Reddy, J. N.: Introduction to the finite element method, 2nd ed. New York: McGraw Hill 1993.

    Google Scholar 

  27. Nuismer, R. J., Tan, S. C.: Constitutive relations of a cracked composite lamina. J. Comp. Mater.22, 306–321 (1988).

    Google Scholar 

  28. Gamby, D., Rebière, J. L.: A two-dimensional analysis of multiple matrix cracking in a laminated composite close to its characteristic damage state. Comp. Struct.25, 325–337 (1993).

    Google Scholar 

  29. Varna, J., Berglund, L. A., Talreja, R., Jakovics, A.: A study of the opening displacement of cracks in cross-ply laminates. Int. J. Damage Mech.2, 272–289 (1993).

    Google Scholar 

  30. Motogi, S., Fukuda, T., Fushimi, T.: Matrix crack opening displacement in cross-ply composite laminates. In: Advances in fiber composite materials, Vol. 12 (Fukuda, T., Maekawa, Z., Fuji, T., eds.), pp. 25–39. The Society for Materials Science, Japan, 1995.

    Google Scholar 

  31. Dvorak, G. J., Laws, N., Hejazi, M.: Analysis of progressive matrix cracking in composite laminates I. Thermoelastic properties of a ply with cracks. J. Comp. Mater.19, 216–234 (1985).

    Google Scholar 

  32. Hughes, T. J. R.: The finite element method. Englewood Cliffs: Prentice-Hall, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveen, G.N., Reddy, J.N. Transverse matrix cracks in cross-ply laminates: Stress transfer, stiffness reduction and crack opening profiles. Acta Mechanica 130, 227–248 (1998). https://doi.org/10.1007/BF01184313

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184313

Keywords

Navigation