Skip to main content
Log in

Abstract

For a class of Schrödinger operatorsH:=−(ℏ2/2m)Δ+V onL 2(ℝn), with potentials having minima embedded in the continuum of the spectrum and non-trapping tails, we show the existence of shape resonances exponentially close to the real axis as ℏ↘0. The resonant energies are given by a convergent perturbation expansion in powers of a parameter exhibiting the expected exponentially small behaviour for tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys.22, 269–279 (1971)

    Google Scholar 

  2. Agmon, S.: Lectures on exponential decay of second-order elliptic equations: Bounds on eigenfunctions ofN-body Schrödinger operators. Princeton Math. notes29 (1982)

  3. Ashbaugh, M.S., Harrell, E.M.: Perturbation theory for shape resonances and high barrier potentials Commun. Math. Phys.83, 151–170 (1982)

    Google Scholar 

  4. Baumgartel, H.: A decoupling approach to resonances forN-particle scattering systems. ZIMM preprint, Berlin

  5. Briet, P., Combes, J.M., Duclos, P.: On the location of resonances for Schrödinger operators in the classical limit I: Resonance free domains. Preprint CPT-85/1829. To appear in J. Math. Anal. Appl.

  6. Combes, J.M., Duclos, P., Seiler, R.: Krein's formula and one dimensional multiple well. J. Funct. Anal.52, 257–301 (1983)

    Google Scholar 

  7. Combes, J.M., Duclos, P., Seiler, R.: Convergent expansions for tunneling. Commun. Math. Phys.92, 229–245 (1983)

    Google Scholar 

  8. Combes, J.M., Duclos, P., Seiler, R.: On the shape resonance. Lecture Notes in Physics, Vol. 211, pp. 64–77. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  9. Resonances and scattering in the classical limit. Proceedings of “Methodes semiclassique en mecanique quantique” Luminy 1984, Publ. Univ. Nantes

  10. Shape Resonances at threshold in one dimension (in preparation)

  11. Cycon, H.L.: Resonances defined by modified dilations. Helv. Phys. Act.58, 968–981 (1985)

    Google Scholar 

  12. Dieudonné, J.: Calcul infinitesimal. Paris: Hermann 1968

    Google Scholar 

  13. Faris, W.G.: Selfadjoint operators. Lecture Notes in Mathematics, Vol. 233. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  14. Gamov, G.: Zur Quantentheorie der Atomkerne. Z. Phys.51, 204–212 (1928)

    Google Scholar 

  15. Zur Quantentheorie der Atomzertrümmerung. Z. Phys.52, 510–515 (1929)

    Google Scholar 

  16. Gurney, R.W., Condon, E.U.: Quantum mechanics and radioactive disintegration. Phys. Rev.33, 127–132 (1929)

    Google Scholar 

  17. Nature122, 439 (1928)

    Google Scholar 

  18. Hunziker, W.: Distortion analyticity and molecular resonance curves. To appear in Ann. Inst. Henri Poincaré

  19. Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. I. Commun. P.D.E.9 (4), 337–369 (1984)

    Google Scholar 

  20. Helffer, B., Sjöstrand, J.: Puits multiples en limite semi-classique. II. Ann. Inst. Henri Poincaré42, 127–212 (1985)

    Google Scholar 

  21. Helffer, B., Sjöstrand, J.: Effet tunnel pour l'operateur de Schrödinger; semiclassique. II. Resonances. To appear in the Proceedings of the Nato Inst. on Micro-Analysis at “Il Ciorco”, Sept. 1985 (Dortrecht: Reidel)

  22. Resonances en limite semi classique. Prepublication de l'Universite de Nantes. To appear in the Suppl. Bull. Soc. Math. France

  23. Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Decaying quantum-mechanical states: an informal discussion within stochastic mechanics. Lett. Nuovo Cim.34, 13–17 (1982)

    Google Scholar 

  24. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  25. Klein, M.: On the absence of resonances for Schrödinger operators with non-trapping potentials in the classical limit. Commun. Math. Phys.106, 485–494 (1986)

    Google Scholar 

  26. Klein, M.: On the mathematical theory of predissociation. TUB-Preprint Nr. 144 Berlin (1985)

  27. Krein, M.: Über Resolventen hermitescher Operatoren mit Defektindex (m, m). Dokl. Akad. Nauk. SSSR52, 657–660 (1946)

    Google Scholar 

  28. Lavine, R.: Spectral density and sojourn times. Atomic and scattering theory. Ed. J. Nuttall. Univ. of West. Ontario (1978)

  29. Lions, J.L., Magenes, E.: Problemes aux limites non homogenes et applications. Paris: Dunod 1968

    Google Scholar 

  30. Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys.78, 391–408 (1981)

    Google Scholar 

  31. Mourre, E.: Operateurs conjugués et proprieté de propagation. Commun. Math. Phys.91, 279–300 (1983)

    Google Scholar 

  32. Majda, A., Ralston, J.: An analogue of Weyl's theorem for unbounded domains. I. Duke Math. J.45, 183–196 (1978)

    Google Scholar 

  33. An analogue of Weil's theorem for unbounded domains. II. Duke Math. J.45, 513–536 (1978)

    Google Scholar 

  34. An analogue of Weil's theorem for unbounded domains. III. An epilogue. Duke Math. J.46, 725–731 (1979)

    Google Scholar 

  35. Orth, A.: Die mathematische Beschreibung von Resonanzen im Vielteilchen-Quantumsystem. Thesis Frankfurt (1985)

  36. Reed, M., Simon, B.: Methods of modern mathematical physics. I. New York: Academic Press 1980

    Google Scholar 

  37. Robert, D., Tamura, H.: Semiclassical bounds for resolvents of Schrödinger operators and asymptotics of scattering phase. Commun. P.D.E.9, 1017 (1984)

    Google Scholar 

  38. Simon, B.: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett.71 A, 211–214 (1979)

    Google Scholar 

  39. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. Henri Poincaré38, 295–307 (1983)

    Google Scholar 

  40. Simon, B.: Semiclassical analysis of low lying eigenvalues. II. Tunneling. Ann. Math.120, 89–118 (1984)

    Google Scholar 

  41. Sigal, I.: Complex transformation method and resonances in one-body quantum system. Ann. Inst. Henri Poincaré41, 103–114 (1984)

    Google Scholar 

  42. Siedentop, H.K.H.: Bound on resonance eigenvalue of Schrödinger operators-local Birman Schwinger bound. Phys. Lett.99 A, 65 (1983)

    Google Scholar 

  43. Sjöstrand, J.: Tunnel effect for semiclassical Schrödinger operators. Proceedings of the Workshop and Symposium on “Hyperbolic equations and related topics”. Katada and Kyoto 1984

  44. Neuman, J. von, Wigner, E.P.: Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z.30, 467–470 (1929)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combes, J.M., Duclos, P., Klein, M. et al. The shape resonance. Commun.Math. Phys. 110, 215–236 (1987). https://doi.org/10.1007/BF01207364

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01207364

Keywords

Navigation