Skip to main content
Log in

On uniqueness criteria and minimum principles for crystalline solids at finite strain

Eindeutigkeitskriterien und Minimalprinzipien für kristalline Festkörper endlicher Verzerrungen

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

New uniqueness criteria and minimum principles for quasi-static, rate-type boundary value problems in crystalline solids are derived. The analysis is based upon a general constitutive theory of finite elastic-plastic deformation encompassing the distinct mechanisms of lattice straining and crystallographic slip. Locally sufficient uniqueness criteria and a related minimum principle permitting the independent variation of velocity and plastic shear rates are established for the case when the two dominant principal stresses are everywhere tensile.

Zusammenfassung

Es werden neue Eindeutigkeitskriterien und Minimalprinzipien für quasistatische inkrementelle Randwertprobleme in kristallinen Festkörpern hergeleitet. Die Analyse beruht auf einer allgemeinen konstitutiven Theorie endlicher, elastisch-plastischer Verformungen, welche die getrennten Vorgänge von Gitterdehnung und Kristallgleitung einschließen. Örtlich hinreichende Eindeutigkeitskriterien und ein damit zusammenhängendes Minimalprinzip ermöglichen die unabhängige Variation von Verformungsgeschwindigkeit und plastischer Gleitgeschwindigkeit und werden aufgestellt für den Fall, daß die beiden dominierenden Hauptspannungen überall positiv sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, R., Rice, J. R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids20, 401 (1972).

    Google Scholar 

  2. Havner, K. S.: On the mechanics of crystalline solids. J. Mech. Phys. Solids21, 383 (1973).

    Google Scholar 

  3. Havner, K. S.: Aspects of theoretical plasticity at finite deformation and large pressure. J. Appl. Math. Phys. (ZAMP)25, 765 (1974).

    Google Scholar 

  4. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids5, 229 (1957).

    Google Scholar 

  5. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids6, 236 (1958).

    Google Scholar 

  6. Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids7, 209 (1959).

    Google Scholar 

  7. Hill, R.: Bifurcation and uniqueness in non-linear mechanics of continua. Problems of Continuum Mechanics, p. 155. Philadelphia: SIAM. 1961.

    Google Scholar 

  8. Hill, R.: Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics. J. Mech. Phys. Solids10, 185 (1962).

    Google Scholar 

  9. Sewell, M. J.: On applications of saddle-shaped and convex generating functionals. Physical Structure in Systems Theory (Van Dixhoorn, J. J., Evans, F. J., ed.), p. 219. London: Academic Press. 1974.

    Google Scholar 

  10. Sewell, M. J.: A survey of plastic buckling. Stability (Leipholz, H., ed.), p. 85. Waterloo: University Press. 1972.

    Google Scholar 

  11. Havner, K. S., Patel, H. P.: On convergence of the finite-element method for a class of elastic-plastic solids. Quart. Appl. Math.34, 59 (1976).

    Google Scholar 

  12. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. (Lond.)A 326, 131 (1972).

    Google Scholar 

  13. Havner, K. S.: A discrete model for the prediction of subsequent yield surfaces in polycrystalline plasticity. Int. J. Solids Structures7, 719 (1971).

    Google Scholar 

  14. Havner, K. S.: On unification, uniqueness, and numerical analysis in plasticity. Int. J. Solids Structures13, 625 (1977).

    Google Scholar 

  15. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids14, 95 (1966).

    Google Scholar 

  16. Havner, K. S., Varadarajan, R.: A quantitative study of a crystalline aggregate model. Int. J. Solids Structures9, 379 (1973).

    Google Scholar 

  17. Havner, K. S., Singh, C., Varadarajan, R.: Plastic deformation and latent strain energy in a polycrystalline aluminum model. Int J. Solids Structures10, 861 (1974).

    Google Scholar 

  18. Havner, K. S., Singh, C.: Application of a discrete polycrystal model to the analysis of cyclic straining in copper. Int. J. Solids Structures13, 395 (1977).

    Google Scholar 

  19. Havner, K. S.: Some concepts and results from the mechanics of crystalline solids having possible application to theories of thermoviscoplasticity. Workshop on Applied Thermoviscoplasticity, p. 11. The Technological Institute, Northwestern University. 1975.

  20. Nye, J. F.: Physical Properties of Crystals, p. 137. Oxford: Clarendon Press. 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havner, K.S. On uniqueness criteria and minimum principles for crystalline solids at finite strain. Acta Mechanica 28, 139–151 (1977). https://doi.org/10.1007/BF01208794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208794

Keywords

Navigation