Skip to main content
Log in

Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that the global charges of a gauge theory may yield a nontrivial central extension of the asymptotic symmetry algebra already at the classical level. This is done by studying three dimensional gravity with a negative cosmological constant. The asymptotic symmetry group in that case is eitherR×SO(2) or the pseudo-conformal group in two dimensions, depending on the boundary conditions adopted at spatial infinity. In the latter situation, a nontrivial central charge appears in the algebra of the canonical generators, which turns out to be just the Virasoro central charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, L. F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys.B195, 76 (1982)

    Google Scholar 

  2. Abbott, L. F., Deser, S.: Charge definition in non-Abelian gauge theories, Phys. Lett.116B, 259 (1982)

    Google Scholar 

  3. Geroch, R.: Asymptotic structure of space-time. In: Asymptotic structure of space-time, Esposito, F. P., Witten, L. (eds.) New York: Plenum Press 1977

    Google Scholar 

  4. Ashtekar, A.: Asymptotic structure of the gravitational field at spatial infinity. In: General relativity and gravitation: One hundred years after the birth of Albert Einstein, vol. 2 Held, A. (ed.). New York: Plenum Press 1980. See also his contribution in Proceedings of the Oregon conference on mass and asymptotic structure of space-time. Flaherty, F. (ed.). Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  5. Nelson, P., Manohar, A.: Global color is not always defined. Phys. Rev. Lett.50, 943 (1983); Balachandran, A. P., Marmo, G., Mukunda, N., Nilsson, J. S., Sudarshan, E. C. G., Zaccaria, F.: Monopole topology and the problem of color. Phys. Rev. Lett.50, 1553 (1983)

    Google Scholar 

  6. Henneaux, M.: Energy-momentum, angular momentum, and supercharge in 2 + 1 supergravity. Phys. Rev.D29, 2766 (1984); Deser, S.: ‘Breakdown of asymptotic Poincaré invariance inD = 3 Einstein gravity.’ Class. Quantum Grav.2, 489 (1985)

    Google Scholar 

  7. Arnold, V.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  8. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. (N.Y.)88, 286 (1974)

    Google Scholar 

  9. See for instance Scherk, J.: An introduction to the theory of dual models and strings. Rev. Mod. Phys.47, 123 (1975)

    Google Scholar 

  10. Brown, J. D., Henneaux, M.: to appear, J. Math. Phys.

  11. Jackiw, R.: Introduction to the Yang-Mills quantum theory. Rev. Mod. Phys.52, 661 (1980)

    Google Scholar 

  12. Deser, S., Jackiw, R., 't Hooft, G.: Three-dimensional Einstein gravity: Dynamics of flat space. Ann. Phys.152, 220 (1984)

    Google Scholar 

  13. Deser, S., Jackiw, R.: Three-dimensional cosmological gravity: Dynamics of constant curvature. Ann. Phys.153, 405 (1984)

    Google Scholar 

  14. See for example, Dirac, P. A. M.: The theory of gravitation in Hamiltonian form. Proc. Roy. Soc.A246, 333 (1958); Arnowitt, R., Deser, S., Misner, C. W.: In: Gravitation: An introduction to current research. Witten L. (ed.). New York: Wiley 1962

    Google Scholar 

  15. Henneaux, M., Teitelboim, C.: Asymptotically anti-de Sitter spaces. Commun. Math. Phys.98, 391 (1985)

    Google Scholar 

  16. Benguria, R., Cordero, P., Teitelboim, C.: Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry. Nucl. Phys.B122, 61 (1977)

    Google Scholar 

  17. Penrose, R.: In: Relativity, groups, and topology. Dewitt C., De Witt B. (eds.). New York: Gordon and Breach 1964

    Google Scholar 

  18. Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian systems. Acc. Naz. dei Lincei, Rome 1976

    Google Scholar 

  19. Teitelboim, C.: Commutators of constraints reflect the spacetime structure. Ann. Phys. (N.Y.)79, 542 (1973)

    Google Scholar 

  20. This has been recognized independently by A. Ashtekar and A. Magnon-Ashtekar (private communication)

  21. See for instance, Faddeev, L. D.: Operator anomaly for the Gauss law. Phys. Lett.145B, 81 (1984); Alvarez, O., Singer, I. M., Zumino, B.: Gravitational anomalies and the family's index theorem. Commun. Math. Phys.96, 409 (1984); and references therein

    Google Scholar 

  22. See for instance, Jackiw, R.: Three-cocycle in mathematics and physics. Phys. Rev. Lett.54, 159 (1985); Grossman, B.: A 3-cocycle in quantum mechanics. Phys. Lett.152B, 93 (1985); Wu, Y. S., Zee, A.: Cocycles and magnetic monopole. Phys. Lett.152B, 98 (1985); Boulware, D. G., Deser, S., Zumino, B.: Absence of 3-cocycles in the Dirac monopole problem. Phys. Lett.153B, 307 (1985)

    Google Scholar 

  23. For example, in the problem of spacetime symmetries of gauge fields, see Henneaux, M.: Remarks on spacetime symmetries and nonabelian gauge fields. J. Math. Phys.23, 830 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. W. Hawking

Chercheur qualifié du Fonds National Belge de la Recherche Scientifique

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986). https://doi.org/10.1007/BF01211590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211590

Keywords

Navigation