Skip to main content
Log in

Fractional differential models in finite viscoelasticity

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A new class of constitutive models is derived for viscoelastic media with finite strains. The models employ the so-called fractional derivatives of tensor functions.

We introduce fractional derivatives for an objective tensor which satisfies some natural assumptions. Afterwards, we construct fractional differential analogs of the Kelvin-Voigt, Maxwell, and Maxwell-Weichert constitutive models. The models are verified by comparison with experimental data for viscoelastic solids and fluids. We consider uniaxial tension of a bar and radial oscillations of a thick-walled spherical shell made of the fractional Kelvin-Voigt incompressible material. Explicit solutions to these problems are derived and compared with experimental data for styrene butadiene rubber and synthetic rubber. It is shown that the fractional Kelvin-Voigt model provides excellent prediction of experimental data. For uniaxial tension of a bar and simple shear of an infinite layer made of the fractional Maxwell compressible material, we develop explicit solutions and compare them with experimental data for polyisobutylene specimens. It is shown that the fractional Maxwell model ensures fair agreement between experimental data and results of numerical simulation. This model allows the number of adjustable parameters to be reduced significantly compared with other models which ensure the same level of accuracy in the prediction of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R. L., Torvik, P. J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol.27, 201–210 (1983).

    Google Scholar 

  2. Bagley, R. L., Torvik, P. J.: On the fractional calculus model of viscoelastic behavior. J. Rheol.30, 133–155 (1986).

    Google Scholar 

  3. Friedrich, C.: Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta30, 151–158 (1991).

    Google Scholar 

  4. Glockle, W. G., Nonnenmacher, T. F.: Fractional relaxation and the time-temperature superposition principle. Rheol. Acta33, 337–343 (1994).

    Google Scholar 

  5. Heymans, N., Bauwens, J.-C.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta33, 210–219 (1994).

    Google Scholar 

  6. Koeller, R. C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech.51, 299–307 (1984).

    Google Scholar 

  7. Nonnenmacher, T. F., Glockle, W. G.: A fractional model for mechanical stress relaxation. Phil. Mag. Lett.64, 89–93 (1991).

    Google Scholar 

  8. Oldham, K. B., Spanier, J.: The fractional calculus. New York: Academic Press 1974.

    Google Scholar 

  9. Srivastava, H. M., Menocha, H. L.: A treatise of generalizing functions. New York: Wiley 1984.

    Google Scholar 

  10. Miller, K. S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. New York: Wiley 1994.

    Google Scholar 

  11. Glockle, W. G., Nonnenmacher, T. F.: Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules24, 6426–6435 (1991).

    Google Scholar 

  12. Ngai, K. L.: Evidences of universal behavior of condensed matter at low frequences/long times. In: Non-Debay relaxation in condensed matter (Ramakrishnan, T. V., Raj Lakshmi, M., eds.) pp. 78–94. Singapore: World Scientific 1987.

    Google Scholar 

  13. Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. R. Soc. London Ser.A200, 523–541 (1950).

    Google Scholar 

  14. Engler, H.: Global regular solution to the dynamic antiplane shear problem in nonlinear viscoelasticity. Math. Z.202, 251–259 (1989).

    Google Scholar 

  15. Renardy, M., Hrusa, W. J., Nohel, J. A.: Mathematical problems in viscoelasticity. New York: Longman 1987.

    Google Scholar 

  16. Leonov, A. I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymeric media. Rheol. Acta15, 85–98 (1976).

    Google Scholar 

  17. White, J. L., Metzner, A. B.: Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci.7, 1867–1889 (1963).

    Google Scholar 

  18. Pearson, G., Middleman, S.: Elongation flow behavior of viscoelastic liquids: modelling bubble dynamics with viscoelastic constitutive relations. Rheol. Acta17, 500–510 (1978).

    Google Scholar 

  19. Janssen, L. P. B. M., Janssen-van Rosmalen, R: An analysis of flow induced formation of long fibers. Rheol. Acta17, 578–588 (1978).

    Google Scholar 

  20. La Mantia, F. P.: Non linear viscoelasticity of polymeric liquids interpreted by means of a stress dependence of free volume. Rheol. Acta16, 302–308 (1977).

    Google Scholar 

  21. Giacomin, A. J., Jeyaseelan, R. S.: A constitutive theory for polyolefins in large amplitude oscillatory shear. Polym. Engng Sci.35, 768–777 (1995).

    Google Scholar 

  22. Bloch, R., Chang, W. V., Tschoegl, N. W.: The behavior of rubberlike materials in moderately large deformations. J. Rheol.22, 1–32 (1978).

    Google Scholar 

  23. Derman, D., Zaphir, Z., Bodner, S. R.: Nonlinear anelastic behavior of a synthetic rubber at finite strains. J. Rheol.22, 239–258 (1978).

    Google Scholar 

  24. Burton, T. A.: Stability and periodic solutions of ordinary and functional differential equations. Orlando: Academic Press 1983.

    Google Scholar 

  25. Glucklich, J., Landel, R. F.: Strain energy function of styrene butadiene rubber and the effect of temperature. J. Polym. Sci. Polym. Phys. Ed.15, 2185–2199 (1977).

    Google Scholar 

  26. Titomanlio, G., Spadaro, G., La Mantia, F. P.: Stress relaxation of a polyisobutylene under large strains. Rheol. Acta19, 477–481 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D. Fractional differential models in finite viscoelasticity. Acta Mechanica 124, 155–180 (1997). https://doi.org/10.1007/BF01213023

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213023

Keywords

Navigation