Skip to main content
Log in

Postsynaptic specializations at excitatory and inhibitory cholinergic synapses

  • Published:
Journal of Neurocytology

Summary

In serial sections of neurons in the paravertebral ganglia of the frog (Limnodynastes dumerili), the postsynaptic structures termed ‘postsynaptic bar’ (PSB) and ‘junctional subsurface organ’ (JSO) were never observed in the same ganglion cell. Further, PSBs were found mostly in small ganglion cells (less than 22 μm), while JSOs were found mostly in large ganglion cells (up to 45 μm). Between 10 and 22 PSBs were located at both ‘spine’ and ‘non-spinous’ somatic synapses of the smaller ganglion cells; while 8 to 16 JSOs were located largely in the axon hillock region of the larger ganglion cells.

Based on these observations, it is suggested that the two ganglion cell populations represent the B and C cell types defined according to electrophysiological data. Further, since the nerve terminals adjacent to both these postsynaptic structures appear to be cholinergic according to their vesicular content, this provides some basis for suggesting that JSOs are associated with slow excitatory synapses, while PSBs are present at slow inhibitory synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Robertis, E. D. P. andBennett, H. S. (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm.Journal of Biophysical and Biochemical Cytology 1, 47–58.

    Google Scholar 

  • Eccles, R. M. andLibet, B. (1961) Origin and blockade of the synaptic responses of curarized sympathetic ganglia.Journal of Physiology 157, 484–503.

    Google Scholar 

  • Fujimoto, S. (1967) Some observations on the fine structure of the sympathetic ganglion of the toad,Bufo vulgaris japonicus.Archivum Histologicum Japonicum 28, 313–35.

    Google Scholar 

  • Gabella, G. (1976)Structure of the autonomic nervous system. London: Chapman and Hall.

    Google Scholar 

  • Hendry, I. A. (1976) A method to correct adequately for the change in neuronal size when estimating neuronal numbers after nerve growth factor treatment.Journal of Neurocytology 5, 337–49.

    Google Scholar 

  • Hill, C. E., Watanabe, H. andBurnstock, G. (1975) Distribution and morphology of amphibian extra-adrenal chromaffin tissue.Cell and Tissue Research 60, 371–87.

    Google Scholar 

  • Hill, C. E. andBurnstock, G. (1975) Amphibian sympathetic ganglia in tissue culture.Cell and Tissue Research 162, 209–33.

    Google Scholar 

  • Honma, S. (1970a) Histochemical demonstration of catecholamines in the toad sympathetic ganglia.Japanese Journal of Physiology 20, 186–97.

    Google Scholar 

  • Honma, S. (1970b) Functional differentiation in sB and sC neurons of toad symapthetic ganglia.Japanese Journal of Physiology 20, 281–95.

    Google Scholar 

  • Koketsu, K. (1969) Cholinergic synaptic potentials and the underlying ionic mechanisms.Federation Proceedings 28, 101–12.

    Google Scholar 

  • Koketsu, K. andYamamoto, K. (1975) Unusual cholinergic response of bullfrog sympathetic ganglion cells.European Journal of Pharmacology 31, 281–6.

    Google Scholar 

  • Konigsmark, B. W., Kalyanaraman, V. P., Corey, P. andMurphy, E. A. (1970) An evaluation of techniques in neuronal population estimates: the sixth nerve nucleus.Johns Hopkins Medical Journal 125, 146–58.

    Google Scholar 

  • Libet, B. (1967) Long latent periods and further analysis of slow synaptic responses in sympathetic ganglia.Journal of Neurophysiology 30, 494–514.

    Google Scholar 

  • Libet, B. (1970) Generation of slow inhibitory and excitatory postsynaptic potentials.Federation Proceedings 29, 1945–56.

    Google Scholar 

  • Libet, B., Chichibu, S. andTosaka, T. (1968) Slow synaptic responses and excitability in sympathetic ganglia of the bullfrog.Journal of Neurophysiology 31, 383–95.

    Google Scholar 

  • Libet, B. andKobayashi, H. (1974) Adrenergic mediation of slow inhibitory postsynaptic potential in sympathetic ganglia of the frog.Journal of Neurophysiology 37, 805–14.

    Google Scholar 

  • Libet, B. andOwman, Ch. (1974) Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent.Journal of Physiology 237, 635–62.

    Google Scholar 

  • Mizell, S. (1965) Seasonal changes in energy reserves in the common frog,Rana pipiens.Journal of Cellular and Comparative Physiology 66, 251–8.

    Google Scholar 

  • Nakamura, M. andKoketsu, K. (1972) The effect of adrenaline on sympathetic ganglion cells of bullfrogs.Life Sciences 11, 1165–73.

    Google Scholar 

  • Nishi, S., Soeda, H. andKoketsu, K. (1965) Studies on sympathetic B and C neurons and patterns of preganglionic innervation.Journal of Cellular and Comparative Physiology 66, 19–32.

    Google Scholar 

  • Nishi, S., Soeda, H. andKoketsu, K. (1967) Release of acetylcholine from sympathetic preganglionic nerve terminals.Journal of Neurophysiology 30, 114–34.

    Google Scholar 

  • Nishi, S. andKoketsu, K. (1968) Early and late after-discharges of amphibian sympathetic ganglion cells.Journal of Neurophysiology 31, 109–21.

    Google Scholar 

  • Norberg, K.-A. andMcIsaac, R. J. (1967) Cellular location of adrenergic amines in frog sympathetic ganglia.Experientia 23, 1052.

    Google Scholar 

  • Pick, J. (1963) The submicroscopic organization of the sympathetic ganglion in the frog (Rana pipiens).Journal of Comparative Neurology 120, 409–62.

    Google Scholar 

  • Pick, J. (1970)The autonomic nervous system. Morphological, comparative, clinical and surgical aspects. Philadelphia and Toronto: J. B. Lippincott Company.

    Google Scholar 

  • Piezzi, R. S. andRodriguez Echandia, E. L. (1968) Studies on the para-renal ganglion of the toadBufo arenarum Hensel. I. Its normal fine structure and histochemical characteristics.Zeitschrift für Zellforschung und mikroskopische Anatomie 88, 180–6.

    Google Scholar 

  • Purves, R. D. (1976) Function of muscarinic and nicotinic acetylcholine receptors.Nature 261, 149–51.

    Google Scholar 

  • Sotelo, C. (1968) Permanence of postsynaptic specializations in the frog sympathetic ganglion cells after denervation.Experimental Brain Research 6, 294–305.

    Google Scholar 

  • Taxi, J. (1961) Etude de l'ultrastructure des zones synaptiques dans les ganglions sympathiques de la grenouille.Comptes rendus de l'Académie des Sciences, Paris 252, 174–6.

    Google Scholar 

  • Taxi, J. (1967) Observations on the ultrastructure of the ganglionic neurons and synapses of the frogRana esculenta L. In:The Neuron (edited byHyden, H.), pp. 221–54. Amsterdam, London and New York: Elsevier Publishing Company.

    Google Scholar 

  • Taxi, J. (1976) Morphology of the autonomic nervous system. In:Frog Neurobiology, (edited byR. Llinás andW. Precht), pp. 93–150. Berlin: Springer-Verlag.

    Google Scholar 

  • Tosaka, T., Chichibu, S. andLibet, B. (1968) Intracellular analysis of slow inhibitory and excitatory postsynaptic potentials in sympathetic ganglia of the frog.Journal of Neurophysiology 31, 396–409.

    Google Scholar 

  • Uchizono, K. (1964) On different types of synaptic vesicles in the sympathetic ganglia of amphibia.Japanese Journal of Physiology 14, 210–19.

    Google Scholar 

  • Uchizono, K. andOhsawa, K. (1973) Morpho-physiological consideration on synaptic transmission in the amphibian sympathetic ganglion.Acta Physiologica Polanica 24, 205–14.

    Google Scholar 

  • Watanabe, H. andBurnstock, G. (1976a) Junctional subsurface organs in frog sympathetic ganglion cells.Journal of Neurocytology 5, 125–136.

    Google Scholar 

  • Watanabe, H. andBurnstock, G. (1976b) A special type of small granule-containing cell in the abdominal para-aortic region of the frog.Journal of Neurocytology 5, 465–78.

    Google Scholar 

  • Weibel, E. R. (1973) Stereological techniques for electron microscopic morphometry. In:Principles and techniques of electron microscopy (edited byHayat, M. A.)Biological applications.3, pp. 237–296. New York, Cincinnati, Toronto, London and Melbourne: Van Nostrand Reinhold Company.

    Google Scholar 

  • Weight, F. F. andVotata, J. (1970) Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance.Science 170, 755–8.

    Google Scholar 

  • Weight, F. F. andPadjen, A. (1973a) Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells.Brain Research 55, 219–24.

    Google Scholar 

  • Weight, F. F. andPadjen, A. (1973b) Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells.Brain Research 55, 225–8.

    Google Scholar 

  • Weitsen, H. A. andWeight, F. F. (1973) Chromaffin cells in the frog sympathetic ganglion: morphology not consistent with role in generation of synaptic potentials.Anatomical Record 175, 467.

    Google Scholar 

  • Yamamoto, T. (1963) Some observations on the fine structure of the sympathetic ganglion of bullfrog.Journal of Cell Biology 16, 159–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, H., Burnstock, G. Postsynaptic specializations at excitatory and inhibitory cholinergic synapses. J Neurocytol 7, 119–133 (1978). https://doi.org/10.1007/BF01213464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213464

Keywords

Navigation