Skip to main content
Log in

Heat transfer in the stagnation point flow of a micropolar fluid

Wärmeübergang in der Staupunktsströmung eines mikropolaren Fluids

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Similar solutions of the equations describing the thermal boundary layer of a micropolar fluid on a plane wall are found to exist for the stagnation point flow when the wall temperature variation is parabolic. The two types of boundary conditions used for microrotation are: (a) the relative spin of the particles on the boundary is related to the skew symmetric part of the stress on the boundary by a parameter which is a measure of the concentration of microelements, and (b) the couple stress on the boundary is related to the relative spin of the particles on the boundary by a friction factor which accounts for the rotational slip of the fluid along the boundary. The velocity, microrotation and temperature fields have been presented graphically for various values of the boundary condition parameters. The skin friction coefficient, wall couple stress coefficient, displacement and momentum thicknesses and rate of heat transfer have been tabulated. A comparison with the corresponding results for a Newtonian fluid has been made.

Zusammenfassung

Es werden ähnliche Lösungen der Gleichungen, die die thermische Randschicht eines mikropolaren Fluids längs einer ebenen Wand beschreiben, für die Staupunktsströmung bei parabolischer Änderung der Wandtemperatur gefunden. Zwei Typen von Randbedingungen werden für die Mikrorotation verwendet: (a) Der relative Spin der Teilchen am Rand ist verknüpft mit dem schiefsymmetrischen Anteil der Spannungen am Rand über einen Parameter, der ein Maß für die Konzentration der Mikroelemente darstellt. (b) Die Momentenspannung an der Berandung ist mit dem relativen Spin der Teilchen am Rand mit einem Reibungsfaktor verknüpft, der den Drehslip des Fluids längs der Berandung beschreibt. Die Geschwindigkeits-, Mikrorotations- und Temperaturfelder werden graphisch für verschiedene Werte des Parameters für die Randbedingungen dargestellt. Der Wandreibungskoeffizient, der Koeffizient der Wandmomentenspannung, Verschiebung und Impulsflußdicke und die Wärmeübergangsrate werden tabelliert. Ein Vergleich mit den entsprechenden Ergebnissen der Newtonschen Flüssigkeit wird angestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyt, J. W., Fabula, A. G.: The effect of additives on fluid friction. U.S. Naval Ordnance Test Station Report (1964).

  2. Vogel, W. M., Patterson, A. M.: An experimental investigation of additives injected into the boundary layer of an underwater body. Pacific Naval Lab. of the Defense Research Board of Canada Report, 64-2 (1964).

  3. Brian Latto, Chi-Hung Shen: Experimental investigation of polymer solution injection of external boundary layers. Proceedings of Turbulence Measurements in Liquids, University of Missouri, Sept., pp. 110–115 (1969).

  4. Eringen, A. C.: Mechanics of micropolar continua. In: Contributions to Mechanics (Abir, D., ed.), pp. 23–40. Pergamon Press 1970.

  5. Cowin, S. C., Pennington, C. J.: On the steady rotational motion of polar fluids. Rheol. Acta9, 307–312 (1970).

    Google Scholar 

  6. Condiff, D. W., Dahler, J. S.: Phys. Fluids7, 842 (1964).

    Google Scholar 

  7. Erdogan, M. E.: Polar effects in the apparent viscosity of a suspension. Rheol. Acta9, 434–438 (1970).

    Google Scholar 

  8. Aero, E. L., Bulygin, A. N., Kuvshinskii, E. V.: J. Appl. Math. Mech.29, 333 (1965).

    Google Scholar 

  9. Eringen, A. C.: Theory of thermomicrofluids. J. Math. Anal. and Appl.38, 480–496 (1972).

    Google Scholar 

  10. Balaram, M., Sastry, V. U. K.: Micropolar free convection flow. Int. J. Heat Mass Trans.16, 437 (1973).

    Google Scholar 

  11. Maiti, G.: Convective heat transfer in micropolar fluid flow through a horizontal parallel plate channel. ZAMM55, 105–111 (1975).

    Google Scholar 

  12. Peddieson, J., jr., McNitt, R. P.: Boundary layer theory for a micropolar fluid. Recent Advances in Engng. Sci.5, 405–426 (1970).

    Google Scholar 

  13. Willson, A. J.: Boundary layers in micropolar fluids. Proc. Camb. Phil. Soc.67, 469 (1970).

    Google Scholar 

  14. Nath, G.: Similar solutions for the incompressible laminar boundary layer with pressure gradient in micropolar fluids. Rheol. Acta14, 850–857 (1975).

    Google Scholar 

  15. Nath, G.: Non-similar incompressible laminar boundary layer flows in micropolar fluids. Rheol. Acta15, 209–214 (1976).

    Google Scholar 

  16. Ojha, S. K., Banerjee, A. K., Mathur, M. N.: Micropolar fluid jet impingement on a curved surface. Int. J. Engng. Sci.16, 143–164 (1978).

    Google Scholar 

  17. Mathur, M. N., Ojha, S. K., Subhadra Ramachandran, P.: Thermal boundary layer of a micropolar fluid on a circular cylinder. (Accepted for publication in Int. J. Heat Mass Trans.21, 923–933 (1978).

    Google Scholar 

  18. Ojha, S. K., Subhadra Ramachandran, P., Mathur, M. N.: Thermal boundary layer of a micropolar fluid jet impinging normally on a flat plate. (Accepted for publication in Acta Mechanica.)

  19. Banerjee, A. K., Satyanarayana, G., Mathur, M. N., Ojha, S. K.: Thermal boundary layer of a micropolar fluid on a curved surface. (Accepted for publication in National Academy of Sciences, India, Allahabad, P. L. Bhatnagar Commemoration volume.)

  20. Ahmadi, G.: Self similar solution of incompressible micropolar boundary layer flow of a semi-infinite plate. Int. J. Engng. Sci.14, 639–646 (1976).

    Google Scholar 

  21. Korzhov, E. N.: Three dimensional boundary layer equations of micropolar fluid on arbitrary surface. Letters in Appl. and Engng. Sci.5, 119–128 (1977).

    Google Scholar 

  22. Van Dyke, M.: Perturbation methods in fluid mechanics, Chap. 5. London: Academic Press 1964.

    Google Scholar 

  23. Tözeren, A., Skalak, R.: Micropolar fluids as models for suspension of rigid spheres. Int. J. Engng. Sci.15, 511–523 (1977).

    Google Scholar 

  24. Kline, K. A.: A spin vorticity relation for unidirectional plane flows of micropolar fluids. Int. J. Engng. Sci.15, 131–134 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, P.S., Mathur, M.N. Heat transfer in the stagnation point flow of a micropolar fluid. Acta Mechanica 36, 247–261 (1980). https://doi.org/10.1007/BF01214635

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01214635

Keywords

Navigation