Skip to main content
Log in

Universal scaling behaviour for iterated maps in the complex plane

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

According to the theory of Schröder and Siegel, certain complex analytic maps possess a family of closed invariant curves in the complex plane. We have made a numerical study of these curves by iterating the map, and have found that the largest curve is a fractal. When the winding number of the map is the golden mean, the fractal curve has universal scaling properties, and the scaling parameter differs from those found for other types of maps. Also, for this winding number, there are universal scaling functions which describe the behaviour asn→∞ of theQ th n iterates of the map, whereQ n is then th Fibonacci number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Eckmann, J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys.53, 643–654 (1981); Ott, E.: Strange attractors and chaotic motions of dynamical systems. Rev. Mod. Phys.53, 655–671 (1981); Helleman, R.H.G.: In: Fundamental problems in statistical mechanics, Cohen, E.G.D. (ed.). Amsterdam: North Holland 1980; These are three recent review articles which include references to earlier work

    Google Scholar 

  2. Shenker, S.J.: Scaling behaviour in a map of a circle into itself: empirical results. Physica5 D, 405–411 (1982); Ostlund, S., Rand, D., Sethna, J., Siggia, E.: A universal transition from quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett.49, 132–135 (1982)

    Google Scholar 

  3. Kadanoff, L.P.: Scaling for a critical Kolmogorov-Arnold-Moser trajectory. Phys. Rev. Lett.47, 1641–1643 (1981); Shenker, S.J., Kadanoff, L.P.: Critical behaviour of a KAM surface: 1. empirical results. J. Stat. Phys.27, 631–656 (1982); Widom, M., Kadanoff, L.P.: Renormalization group analysis of bifurcations in area-preserving maps. Physica5 D, 287–292 (1982)

    Google Scholar 

  4. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys.20, 167–192 (1971); Newhouse, S., Ruelle, D., Takens, F.: Occurence of strange axiom A attractors near quasi periodic flows onT m,m≧3. Commun. Math. Phys.64, 35–40 (1978)

    Google Scholar 

  5. Schröder, E.: Über iterirte Funktionen. Math. Ann.3, 296–322 (1871); Siegel, C.L.: Iteration of analytic functions. Ann. Math.43, 607–612 (1942); For a modern treatment, see Moser, J.K., Siegel, C.L.: Lectures on celestial mechanics. New York: Springer 1971

    Google Scholar 

  6. Fatou, P.: Sur les équations fonctionelles. Bull. Soc. Math. France47, 161–271 (1919),48, 33–94 and 208–314 (1920)

    Google Scholar 

  7. Julia, G.: Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl.4, 47–245 (1918)

    Google Scholar 

  8. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. Astron. Pys.6, 103–144 (1965)

    Google Scholar 

  9. Mandelbrot, B.: Fractal aspects of the iteration ofz → λz(1 −z) for complex λ andz. Ann. N. Y. Acad. Sci.357, 249–259 (1980)

    Google Scholar 

  10. Ruelle, D.: Repellers for real analytic maps. IHES preprint 81/52

  11. Douady, A., Hubbard, J.M.: Itération des polynômes quadratiques complexes. C. R. Acad. Sci. (Paris) Sér. 1,294, 123–126 (1982)

    Google Scholar 

  12. Moser, J.: On invariant curves of area-preserving maps of an annulus. Nachr. Akad. Wiss., Göttingen, Math. Phys. Kl. 1–20 (1962)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. E. Lanford

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manton, N.S., Nauenberg, M. Universal scaling behaviour for iterated maps in the complex plane. Commun.Math. Phys. 89, 555–570 (1983). https://doi.org/10.1007/BF01214743

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01214743

Keywords

Navigation