Skip to main content
Log in

Reduction of mesh sensitivity in continuum damage mechanics

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Continuum damage theories can be applied to simulate the failure behaviour of engineering constructions. In the constitutive equations of the material a damage parameter is incorporated. A damage criterion and a damage evolution law are postulated and quantified based on experimental data. The elaboration of the mathematical formulation is performed by common finite element techniques. Without special precautions the numerical results appear to be unacceptably dependent on the measure of the spatial discretization. It is shown that a simple but effective procedure leads to the conservation of objectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, L. M.: Introduction to continuum damage mechanics. Dordrecht: Martinus Nijhoff 1986.

    Google Scholar 

  2. Lemaitre, J.: Local approach of fracture. Eng. Fract. Mech.25, 523–537 (1986).

    Google Scholar 

  3. Chaboche, J. L.: Continuum damage mechanics, parts 1 and 2. J. Appl. Mech.55, 59–72 (1988).

    Google Scholar 

  4. Bathe, K. J.: Finite element procedures in engineering analysis. Englewood Cliffs: Prentice-Hall 1982.

    Google Scholar 

  5. Pietruszczak, S. T., Mroz, Z.: Finite element analysis of the deformation of strain-softening materials. J. Num. Meth. Eng.17, 327–334 (1981).

    Google Scholar 

  6. Bazant, Z. P., Lin, F. B., Pijaudier-Cabot, G.: Yield limit degradation: nonlocal continuum model with local strain. Proc. Int. Conf. on Computational Plasticity; Barcelona (Onate, E., Owen, R., Hinton, E., eds.), pp. 1757–1779 (1987).

  7. Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comp. Meth. Appl. mech. Eng.67, 69–85 (1988).

    Google Scholar 

  8. Mazars, J., Ramtani, S., Berthaud, Y.: An experimental procedure to delocalize tensile failure and to identify the unilateral effect of distributed damage. Proc. France-US Workshop on Strain Localization and Size Effect due to Cracking and Damage; Cachan, France (Mazars, J., Bazant, Z. P., eds.), pp. 55–64 (1988).

  9. Bazant, Z. P.: Mechanics of distributed cracking. Appl. Mech. Rev. (ASME)39, 675–705 (1986).

    Google Scholar 

  10. Bazant, Z. P.: Stable states and stable paths of propagation of damage zones and interactive fractures. Proc. France-US Workshop on Strain Localization and Size Effect due to Cracking and Damage; Cachan, France (Mazars, J., Bazant, Z. P., eds.), pp. 183–206 (1988).

  11. Schreyer, H. L., Chen, Z.: One-dimensional softening with localization. J. Appl. Mech. (ASME)53, 791–797 (1986).

    Google Scholar 

  12. de Borst, R., Mühlhaus, H. B.: Continuum models for discontinuous media. Proc. Int. RILEM/ESIS Conf. on Fracture Processes in Concrete, Rock and Ceramics, Noordwijk, The Netherlands (van Mier, J. G. M., Rots, J. G., Bakker, A., eds.), pp. 601–618 (1991).

  13. Simo, J. C.: Strain softening and dissipation: a unification of approaches. Proc. France-US Workshop on Strain Localization and Size Effect due to Cracking and Damage; Cachan, France (Mazars, J., Bazant, Z. P., eds.), pp. 440–461 (1988).

  14. Saouridis, C., Mazars, J.: A multiscale approach to distributed damage and its usefulness for capturing structural size effect. Proc. France-US Workshop on Strain Localization and Size Effect due to Cracking and Damage; Cachan, France (Mazars, J., Bazant, Z. P., eds.), pp. 391–403 (1988).

  15. Triantafyllidis, N., Aifantis, E. C.: A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity16, 225–237 (1986).

    Google Scholar 

  16. Kachanov, L. M.: Time of the rupture process under creep conditions. Tzv. Akad. Nauk. SSR. Otd. Tekh.8, 26–31 (1958).

    Google Scholar 

  17. Brekelmans, W. A. M., Schreurs, P. J. G., de Vree, J. H. P.: Continuum damage mechanics for softening of brittle materials. Acta Mech.93, 133–143 (1992).

    Google Scholar 

  18. van der Varst, P. G. T., Brekelmans, W. A. M., de Vree, J. H. P., de Groot, R.: Mechanical performance of a dental composite: probabilistic failure prediction. J. Dent. Res.72, 1249–1256 (1993).

    Google Scholar 

  19. Carmeliet, J.: The durability of fiber-reinforced renderings for outside insulation. Ph. D. Thesis, University of Leuven 1992.

  20. Bazant, Z. P., Pijaudier-Cabot, G.: Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. (ASCE)115, 755–767 (1989).

    Google Scholar 

  21. Rots, J. G.: Computational modeling of concrete fracture. Ph. D. Thesis, Delft University of Technology 1988.

  22. Mazars, J.: Probabilistic aspects of mechanical damage in concrete structures. Proc. Int. Conf. on Fracture Mechanics Technology Applied to Material Evaluation and Structural Design, melbourne, Australia, pp. 657–666 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brekelmans, W.A.M., de Vree, J.H.P. Reduction of mesh sensitivity in continuum damage mechanics. Acta Mechanica 110, 49–56 (1995). https://doi.org/10.1007/BF01215415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215415

Keywords

Navigation