Skip to main content
Log in

The coherent potential approximation is a realizable effective medium scheme

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The effective electrical conductivity of an aggregate, composed of grains of various conductivities, is frequently estimated by the coherent potential approximation, which embodies a local effective medium concept. It is proved rigorously that this approximation is exact for a wide class of hierarchical model composites made of spherical grains: the starting material 0 in the hierarchy is chosen arbitrarily, otherwise, materialj=1, 2, ... consists of equisized spheres, sayj-spheres, of arbitrary conductivities embedded in materialj — 1. The spatial distribution of thej-spheres must satisfy a mild homogeneity condition and their radiusr j must, asymptotically, increase faster than exponentially withj. Furthermore, the minimum spacing, 2s j , between thej-spheres is such that the ratios j /r j diverges. On the basis of these and some further ancillary conditions it is established that the coherent potential approximation becomes asymptotically exact for the effective conductivity of materialj→∞. The results extend to other effective parameters of the composites, including the thermal conductivity, dielectric constant and magnetic permeability. In addition, the model composites and the proof of realizability may be generalized to allow non-spherical grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, B.: in: Applied solid state science, Vol. 6, p. 1, Wolfe, R. ed. New York: Academic Press 1976

    Google Scholar 

  • Archie, G.E.: Petroleum Technology5, No. 1 (1942)

  • Baker, G.A., Jr.: Best error bounds for Padé approximants to convergent series of Stieltjes. J. Math. Phys.10, 814 (1969)

    Google Scholar 

  • Baker, G.A., Jr., Graves-Morris, P.R.: Encyclopedia of mathematics and its applications, Vol. 13, p. 158. Rota, G.-C., ed. London: Addison-Wesley 1981

    Google Scholar 

  • Batchelor, G.K.: Ann. Rev. Fluid, Mech.6, 227 (1974)

    Google Scholar 

  • Beran, M.J.: Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cimento38, 771 (1965)

    Google Scholar 

  • Beran, M.J.: Statistical continuum theories, pp. 181–256. New York: Interscience 1968

    Google Scholar 

  • Bergman, D.J.: The dielectric constant of a composite material — A problem in classical physics. Phys. Rep.43C, 377 (1978)

    Google Scholar 

  • Bergman, D.J.: Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Phys.138, 78 (1982)

    Google Scholar 

  • Berryman, J.G.: J. Acoust. Soc. Am.68, 1809 (1980)

    Google Scholar 

  • Berryman, J.G.: In: Elastic wave scattering and propagation, p. 111, Varadan, V.K., Varadan, V.V., eds. Ann Arbor, MI: Ann Arbor Science 1982

    Google Scholar 

  • Bottcher, C.J.F.: Rec. Trav. Chim.64, 47 (1945)

    Google Scholar 

  • Boyce, W.E., DiPrima, R.C.: Elementary differential equations and boundary value problems, p. 338. New York: Wiley 1969

    Google Scholar 

  • Brown, W.F.: Solid mixture permittivities. J. Chem. Phys.23, 1514 (1955)

    Google Scholar 

  • Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. (Leipzig)24, 636 (1935)

    Google Scholar 

  • Christensen, R.M.: Mechanics of composite materials. New York: Wiley 1979

    Google Scholar 

  • Christensen, R.M., Lo, K.H.: J. Mech. Phys. Sol.27, 315 (1979)

    Google Scholar 

  • Clausius, R.: Die mechanische Behandlung der Elektrizität, p. 62, Braunschweig: Vieweg 1879

    Google Scholar 

  • Cleary, M.P., Chen, I.W., Lee, S.M.: J. Eng. Mech. Div., Proc. Am. Soc. Civil Eng.106, 861 (1980)

    Google Scholar 

  • Cohen, M.H., Jortner, J.: Effective medium theory for the Hall effect in disordered materials. Phys. Rev. Lett.30, 696 (1973)

    Google Scholar 

  • Dykhne, A.M.: Conductivity of a two-dimensional two-phase system. Zh. Eksp. Teor. Fiz.59, 110 (1970) [Soviet Phys. JETP32, 63 (1971)]

    Google Scholar 

  • Elliott, R.J., Krumhansl, J.A., Leath, P.L.: The theory and related properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys.46, 465 (1974)

    Google Scholar 

  • Elsayed, M.A.: Bounds for effective thermal, electrical, and magnetic properties of heterogeneous materials using higher order statistical information. J. Math. Phys.15, 2001 (1974)

    Google Scholar 

  • Elsayed, M.A., McCoy, J.J.: J. Compos. Mater.7, 466 (1973)

    Google Scholar 

  • Felderhof, B.U.: Bounds for the effective dielectric constant of disordered two-phase materials. J. Phys. C15, 1731 (1982)

    Google Scholar 

  • Felderhof, B.U., Ford, G.W., Cohen, E.G.D.: Cluster expansion for the dielectric constant of a polarizable suspension. J. Stat. Phys.28, 135 (1982)

    Google Scholar 

  • Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, p. 78. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Golden, K., Papanicolaou, G.: Bounds for effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys.90, 473 (1983)

    Google Scholar 

  • Golden, K.: Bounds for effective parameters of multi component media by analytic continuation, Ph. D. Thesis, Courant Institute of Mathematical Sciences, New York University, New York 1984

    Google Scholar 

  • Grannan, D.M., Garland, J.C., Tanner, D.B.: Critical behavior of the dielectric constant of a random composite near the percolation threshold. Phys. Rev. Lett.46, 375 (1981)

    Google Scholar 

  • Gubernatis, J.E., Krumhansl, J.A.: Macroscopic engineering properties of polycrystalline materials: Elastic properties. J. Appl. Phys.46, 1875 (1975)

    Google Scholar 

  • Hale, D.K.: J. Mater. Sci.11, 2105 (1976)

    Google Scholar 

  • Hashin, Z.: J. Appl. Mech., Trans. ASME29, 143 (1962)

    Google Scholar 

  • Hashin, Z.: J. Appl. Mech., Trans. ASME50, 481 (1983)

    Google Scholar 

  • Hashin, Z., Rosen, B.W.: J. Appl. Mech., Trans. ASME31, 223 (1964)

    Google Scholar 

  • Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys.33, 3125 (1962)

    Google Scholar 

  • Hill, R.: J. Mech. Phys. Solids12, 199 (1964)

    Google Scholar 

  • Hori, M., Yonezawa, F.: Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. IV. Effective-medium theory and cumulant expansion method. J. Math. Phys.16, 352 (1975)

    Google Scholar 

  • Johnson, D.L., Sen, P.N.: Physics and chemistry of porous media. New York: Am. Inst. Phys. 1984

    Google Scholar 

  • Kantor, Y., Bergman, D.J.: The optical properties of cermets from the theory of electrostatic resonances. J. Phys. C15, 2033 (1982)

    Google Scholar 

  • Keller, J.B.: A theorem on the conductivity of a composite medium. J. Math. Phys.5, 548 (1964)

    Google Scholar 

  • Keller, J.B., Rubenfeld, L.A., Molyneux, J.E.: J. Fluid Mech.30, 97 (1967)

    Google Scholar 

  • Kellogg, O.D.: Foundation of potential theory. New York: Dover 1953

    Google Scholar 

  • Kerner, E.H.: The electrical conductivity of a composite media. Proc. Phys. Soc. B69, 802 (1956)

    Google Scholar 

  • Kirkpatrick, S.: Classical transport in disordered media: Scaling and effective-medium theories. Phys. Rev. Lett.27, 1722 (1971)

    Google Scholar 

  • Kohler, W., Papanicolaou, G.: in: Multiple scattering and waves in random media, p. 199. Chow, P.L., Kohler, W.E., Papanicolaou, G.C., eds. New York: North-Holland 1981

    Google Scholar 

  • Korringa, J.: Theory of elastic constants of heterogeneous media. J. Math. Phys.14, 509 (1973)

    Google Scholar 

  • Kraichnan, R.H.: Dynamics of nonlinear stochastic systems. J. Math. Phys.2, 124 (1961)

    Google Scholar 

  • Krumhansl, J.A.: in: Amorphous magnetism, p. 15. Hooper, H.O., de Graff, A.M., eds. New York: Plenum 1973

    Google Scholar 

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys.23, 779 (1952)

    Google Scholar 

  • Landauer, R.: in: Electrical transport and optical properties of inhomogeneous media, p. 2. Garland, J.C., Tanner, D.B., eds. New York: Am. Inst. Phys. 1978

    Google Scholar 

  • Lax, M.: in: Multiple scattering and waves in random media, p. 225. Chow, P.L., Kohler, W.E., Papanicolaou, G.C., eds. New York: North-Holland 1981

    Google Scholar 

  • Lloyd, P., Oglesby, J.: Analytic approximations for disordered systems. J. Phys. C9, 4383 (1976)

    Google Scholar 

  • Lurie, K.A., Cherkaev, A.V.: Accurate estimates of the conductivity of mixtures formed of two materials in a given proportion (two-dimensional problem). Dokl. Akad. Nauk.264, 1128 (1982)

    Google Scholar 

  • Maxwell, J.C.: Electricity and magnetism (1st edn.). Oxford: Clarendon Press 1873

    Google Scholar 

  • McKenzie, D.R., McPhedran, R.C., Derrick, G.H.: The conductivity of lattices and spheres. II. The body centered and face centred cubic lattices. Proc. Roy. Soc. Lond. A362, 211 (1978)

    Google Scholar 

  • McPhedran, D.R., McKenzie, R.C., Phan-Thien, N.: in: Advances in the mechanics and flow of granular materials. Shahinpoor, M., Wohlbier, R., eds. New York: McGraw-Hill 1983

    Google Scholar 

  • McCoy, J.J.: in: Mechanics today, Vol. 6, p. 10. Nemat-Nasser, S., ed. New York: Pergamon 1981

    Google Scholar 

  • Mendelson, K.S.: Effective conductivity of two-phase material with cylindrical phase boundaries. J. Appl. Phys.46, 917 (1975)

    Google Scholar 

  • Miller, M.N.: Bounds for effective electrical, thermal, and magnetic properties of heterogeneous materials. J. Math. Phys.10, 1988 (1969)

    Google Scholar 

  • Milton, G.W.: Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys.52, 5286 (1981)

    Google Scholar 

  • Milton, G.W.: in: Johnson, D.L., Sen, P.N., loc. cit., p. 66, 1984a

    Google Scholar 

  • Milton, G.W.: Some exotic models in statistical physics, Ph. D. thesis, Cornell University, Ithaca 1984b

    Google Scholar 

  • Milton, G.W.: To be submitted (1984c)

  • Milton, G.W., Golden, K. In: Thermal conductivity 18. Proc. 18th Intern. Thermal Conductivity Conf. Rapid City, S.D., USA. New York: Plenum Press 1985

    Google Scholar 

  • Milton, G.W., McPhedran, R.C., McKenzie, D.R.: Appl. Phys.25, 23 (1981)

    Google Scholar 

  • Norris, A., Sheng, P.: Private communication (1984)

  • Papanicolaou, G., Varadan, S.: in: Colloquia mathematica societatis jános boyai27, random fields, Esztergom (Hungary) 1982, p. 835. North-Holland

  • Polder, D., Van Santen, J.H.: The effective permeability of mixtures of solids. Physica12, 257 (1946)

    Google Scholar 

  • Prager, S.: Improved variational bounds on some bulk properties of a two-phase random medium. J. Chem. Phys.50, 4305 (1969)

    Google Scholar 

  • Sangani, A.S., Acrivos, A.: The effective conductivity of a periodic array of spheres. Proc. Roy. Soc. Lond. A386, 263 (1983)

    Google Scholar 

  • Schulgasser, K.: Relationship between single-crystal and polycrystal electrical conductivity. J. Appl. Phys.47, 1880 (1976)

    Google Scholar 

  • Schulgasser, K.: Bounds on the conductivity of statistically isotropic polycrystals. J. Phys. C10, 407 (1977a)

    Google Scholar 

  • Schulgasser, K.: Int. J. Heat Mass Trans.20, 1273 (1977b)

    Google Scholar 

  • Schulgasser, K.: Sphere assemblage model for polycrystals and symmetric materials. J. Appl. Phys.54, 1380 (1983)

    Google Scholar 

  • Seager, C.H., Pike, G.E.: Percolation and conductivity: A computer study. II. Phys. Rev. B10, 1435 (1974)

    Google Scholar 

  • Sen, P.N., Chew, W.C., Wilkinson, D.: in: Johnson, D.L., Sen, P.N., loc. cit., p. 52, 1984

    Google Scholar 

  • Sen, P.N., Scala, C., Cohen, M.H.: Geophysics46, 781 (1981)

    Google Scholar 

  • Sheng, P., Callegari, A.J.: in: Johnson, D.L., Sen, P.N., loc. cit., p. 144, 1984

    Google Scholar 

  • Sheng, P., Kohn, R.V.: Geometric effects in continuous-media percolation. Phys. Rev. B26, 1331 (1982)

    Google Scholar 

  • Smith, J.C.: Correction and extension of van der Poel's method for calculating the shear modulus of a particulate composite. J. Res. Nat. Bur. Stand.78A, 355 (1974)

    Google Scholar 

  • Söderberg, M., Grimvall, G.: Current distributions for a two-phase material with chequer-board geometry. J. Phys. C16, 1085 (1983)

    Google Scholar 

  • Solla, S.A., Ashcroft, N.W.: Phys. Rev. B (in press, 1984)

  • Stachowiak, H.: Effective electric conductivity tensor of polycrystalline metals in high magnetic fields. Physica (Utrecht)45, 481 (1970)

    Google Scholar 

  • Stell, G., Patey, G.N., Høye, J.S.: Adv. Chem. Phys.48, 209 (1981)

    Google Scholar 

  • Stinchcomb, R.B., Watson, B.P.: Renormalization group approach for percolation conductivity. J. Phys. C9, 3221 (1976)

    Google Scholar 

  • Straley, J.P.: Position-space renormalization of the percolation conduction problem. J. Phys. C10, 1903 (1977)

    Google Scholar 

  • Stroud, D.: Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B12, 3368 (1975)

    Google Scholar 

  • Stroud, D., Pan, F.P.: Self-consistent approach to electromagnetic wave propagation in composite media: application to model granular metals. Phys. Rev. B17, 1602 (1978)

    Google Scholar 

  • Tartar, L., Murat, F.: Private communication (1981)

  • Van de Hulst, H.C.: Light scattering by small particles, p. 73. New York: Wiley 1957

    Google Scholar 

  • Watt, J.P., Davies, G.F., O'Connell, R.J.: Rev. Geophys.14, 541 (1976)

    Google Scholar 

  • Webman, I., Jortner, J., Cohen, M.H.: Numerical simulation of electrical conductivity in microscopically inhomogeneous materials. Phys. Rev. B11, 2885 (1975)

    Google Scholar 

  • Willemse, M.W.M., Caspers, W.J.: Electrical conductivity of polycrystalline materials. J. Math. Phys.20, 1824 (1979)

    Google Scholar 

  • Willis, J.R.: in: Advances in applied mechanics, Vol.21, p. 42. New York: Academic Press 1981

    Google Scholar 

  • Yonezawa, F., Cohen, M.H.: J. Appl. Phys.54, 2895 (1983)

    Google Scholar 

  • Yonezawa, F., Morigaki, K.: Coherent potential approximation - Basic concepts and applications. Suppl. Prog. Theor. Phys.53, 1 (1973)

    Google Scholar 

  • Zeller, R., Dederichs, P.H.: Phys. Stat. Sol. B55, 831 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. E. Fisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milton, G.W. The coherent potential approximation is a realizable effective medium scheme. Commun.Math. Phys. 99, 463–500 (1985). https://doi.org/10.1007/BF01215906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215906

Keywords

Navigation