Skip to main content
Log in

On the stochastic quantization of field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a rigorous construction of a stochastic continuumP(φ)2 model in finite Euclidean space-time volume. It is obtained by a weak solution of a non-linear stochastic differential equation in a space of distributions. The resulting Markov process has continuous sample paths, and is ergodic with the finite volume EuclideanP(φ)2 measure as its unique invariant measure. The procedure may be called stochastic field quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glimm, J., Jaffe, A.: Quantum physics. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  2. Simon, B.: TheP(φ)2 Euclidean (quantum) field theory. Princeton, NJ: Princeton University Press 1974

    Google Scholar 

  3. Nelson, E.: In: Constructive quantum field theory. Lecture Notes in Physics. Vol. 25, Velo, G., Wightman, A. (eds.). Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  4. Glimm, J., Jaffe, A.: Quantum field models in statistical mechanics and field theory, Les Houches (1970), De Witt, C., Stora, R. (eds.). New York: Gordon and Breach 1971

    Google Scholar 

  5. Glimm, J.: Boson fields with nonlinear selfinteraction in two dimensions. Commun. Math. Phys.8, 12–25 (1968)

    Google Scholar 

  6. Simon, B., Høegh-Krohn, R.: J. Funct. Anal.9, 121–180 (1972)

    Google Scholar 

  7. Gross, L.: Am. J. Math.97, 1061–1083 (1975)

    Google Scholar 

  8. Gross, L.: Harmonic analysis on Hilbert space. Memoris AMS, Vol. 26

  9. Gross, L.: Abstract Wiener spaces. In: Proceedings of the 5th Berkeley Symposium on mathematical statistics and probability. Berkeley, CA: University of California Press 1968

    Google Scholar 

  10. Gross, L.: J. Funct. Anal.10, 52–109 (1972)

    Google Scholar 

  11. Gelfand, I., Vilenkin, N.: Generalized functions. Vol. 4, New York: Academic Press 1964

    Google Scholar 

  12. Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  13. McKean, H.: Stochastic integrals. New York, London: Academic Press 1969

    Google Scholar 

  14. Stroock, D., Varadhan, S.R.S.: Multidimensional diffusion processes. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  15. Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979

    Google Scholar 

  16. Friedman, A.: Stochastic differential equations, Vol. 1. New York: Academic Press 1975

    Google Scholar 

  17. Yor, M., Priouret, P.: Asterisque No. 22

  18. Parisi, G., Wu, Yong-Shi: Sci. Sin.24, 483 (1981)

    Google Scholar 

  19. Faris, W., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A15, 3025 (1982)

    Google Scholar 

  20. Zwanzinger, D.: Covariant quantization of gauge fields without Gribov ambiguity. Nucl. Phys. B192, 259 (1981)

    Google Scholar 

  21. Baulieu, L., Zwanziger, D.: Equivalence of stochastic quantization and the Faddeev-Popov ansatz. Nucl. Phys. B193, 163 (1981)

    Google Scholar 

  22. Floratos, E., Iliopoulos, J.: Equivalence of stochastic and canonical quantization in perturbation theory. Nucl. Phys. B214, 392 (1983)

    Google Scholar 

  23. Floratos, E., Iliopoulos, J., Zwanziger, D.: A covariant ghost-free perturbation expansion for Yang-Mills theories. Nucl. Phys. B241, 221 (1984)

    Google Scholar 

  24. Seiler, E.: 1984, Schladming Lectures. Max-Planck-Institut für Physik München, Preprint

  25. Glauber, R.: Time-dependent statistics of the Ising model. J. Math. Phys.4, 294–307 (1963)

    Google Scholar 

  26. Holley, R.: Free energy in a Markovian model of a lattice spin system. Commun. Math. Phys.23, 87 (1971)

    Google Scholar 

  27. Holley, R., Stroock, D.: In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state. Commun. Math. Phys.55, 37 (1977); Applications of the stochastic Ising model to the Gibbs states. Commun. Math. Phys.48, 249 (1976); Z. Wahrscheinlichkeitstheorie Verw. Geb.35, 87 (1976)

    Google Scholar 

  28. Holley, R., Stroock, D.: Ann. Probab. Vol.4, No. 2, 195; J. Funct. Anal.42, 29 (1981)

  29. Faris, W.: J. Funct. Anal.32, 342 (1979); Trans. Am. Math. Soc.261, 579 (1980)

    Google Scholar 

  30. Wick, W.: Convergence to equilibrium of the stochastic Heisenberg model. Commun. Math. Phys.81, 361 (1981)

    Google Scholar 

  31. Doss, H., Royer, G.: Z. Wahrscheinlichkeitstheorie Verw. Geb.46, 107 (1978)

    Google Scholar 

  32. Dimock, J., Glimm, J.: Adv. Math.12, 58 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Mack

Laboratoire Associé 280 au CNRS

Supported in part by GNSM and INFN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jona-Lasinio, G., Mitter, P.K. On the stochastic quantization of field theory. Commun.Math. Phys. 101, 409–436 (1985). https://doi.org/10.1007/BF01216097

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01216097

Keywords

Navigation