Skip to main content
Log in

Crack propagation in ceramics under cyclic loads

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stable crack growth is observed in notched plates of polycrystalline alumina subject to fully compressive far-field cyclic loads at room temperature in a moist air environment andin vacuo. The fatigue cracks propagate at a progressively decreasing velocity along the plane of the notch and in a direction macroscopically normal to the compression axis. The principal failure events leading to this effect are analysed in terms of notch-tip damage under the far-field compressive stress, microcracking, frictional sliding and opening of microcracks, and crack closure. An important contribution to such Mode I crack growth arises from the residualtensile stresses induced locally at the notch-tip when the deformation within the notch-tip process zone leaves permanent strains upon unloading from the maximum nominal compressive stress. It is shown that the phenomenon of crack growth under cyclic compressive stresses exhibits a macroscopically similar behaviour in a wide range of materials spanning the very ductile metals to extremely brittle solids, although the micromechanics of this effect are very different among the various classes of materials. The mechanisms of fatigue in ceramics are compared and contrasted with the more familiar examples of crack propagation under far-field cyclic compression in metallic systems and the implications for fracture in ceramic-metal composites and transformation toughened ceramic composites are highlighted. Strategies for some important applications of this phenomenon are recommended for the study of fracture mechanisms and for the measurement of fracture toughness in brittle solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans, A. H. Heuer andD. L. Porter, in “Fracture 1977”, edited by D. M. R. Taplin (University of Waterloo Press, Waterloo, 1977) p. 529.

    Google Scholar 

  2. D. A. Krohn andD. P. H. Hasselman,J. Amer. Ceram. Soc. 55, (1972) 208.

    Google Scholar 

  3. F. Guiu,J. Mater. Sci. Lett. 13 (1978) 1357.

    Google Scholar 

  4. Chen andKnapp, in “Fracture Mechanics of Ceramics 2”, edited by R. C. Bradt, D. P. H. Hasse and F. F. Lange (Plenum Press, New York, 1974) p. 691.

    Google Scholar 

  5. S. Ito, Y. Yamauchi, M. Ito andS. Sakai, in “Proceedings of Japan Conferences on Materials Research”, Vol. 26 (Tokyo, 1983) p. 270.

  6. A. G. Evans andM. Linzer,Int. J. Fract. 12 (1976) 217.

    Google Scholar 

  7. A. G. Evans andE. R. Fuller,Metall. Trans. 5A (1974) 27.

    Google Scholar 

  8. A. G. Evans, L. R. Russell andD. W. Richerson,ibid. 6A (1975) 707.

    Google Scholar 

  9. J. Ritter, in “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, Vol. 4 (Plenum Press, New York, 1983) p. 667.

    Google Scholar 

  10. A. G. Evans,Int. J. Fract. 16 (1980) 485.

    Google Scholar 

  11. L. Ewart andS. Suresh,J. Mater. Sci. Lett. 5 (1986) 774.

    Google Scholar 

  12. S. Suresh andL. A. Sylva,Mater. Sci. Eng. 83 (1986) L7.

    Google Scholar 

  13. “Fracture in Compression of Brittle Solids”, edited by A. S. Argon, National Materials Advisory Board Report NMAB-404 (National Academy Press, Washington, DC, 1982).

  14. R. P. Hubbard,J. Basic Eng. 91 (1969) 625.

    Google Scholar 

  15. S. Suresh,Eng. Fract. Mech. 21 (1985) 453.

    Google Scholar 

  16. S. Suresh, T. Christman andC. Bull, in “Small Fatigue Cracks,” edited by R. O. Ritchie and J. Lankford (Metallurgical Society of RIME, Warrendale, Pennsylvania, 1986) p. 513.

    Google Scholar 

  17. D K. Holm, A. F. Blom andS. Suresh,Eng. Fract. Mech. 23 (1986) 1097.

    Google Scholar 

  18. J. R. Rice, ASTM STP 486, (American Society for Testing and Materials, Philadelphia, 1967) p. 247.

    Google Scholar 

  19. P. Aswath andS. Suresh, research in progress (1986).

  20. A. H. Heuer,Phil. Mag. 13 (1966) 379.

    Google Scholar 

  21. R. W. Rice,Mater. Sci. Res. 5 (1971) 195.

    Google Scholar 

  22. J. Lankford,J. Mater. Sci. 12 (1977) 791.

    Google Scholar 

  23. S. M. Wiederhorn, B. J. Hockey andD. E. Roberts,Phil. Mag. 28 (1973) 783.

    Google Scholar 

  24. A. G. Evans, S. M. Wiederhorn andB. J. Hockey,J. Mater. Sci. 9 (1974) 1367.

    Google Scholar 

  25. D. W. Johnson andP. Gibbs,J. Appl. Phys. 34 (1963) 2852.

    Google Scholar 

  26. A. G. Evans,Acta Metall. 26 (1978) 1845.

    Google Scholar 

  27. R. W. Rice, S. W. Freiman andP. F. Becher,J. Amer. Ceram. Soc. 64 (1981) 345.

    Google Scholar 

  28. P. L. Pratt,Metal Sci. 14 (1980) 363.

    Google Scholar 

  29. W. R. Buessem andF. F. Lange,Interceram 15 (1966) 229.

    Google Scholar 

  30. J. E. Blendell andR. L. Coble,J. Amer. Ceram. Soc. 65 (1982) 174.

    Google Scholar 

  31. Y. Fu, PhD. thesis, University of California (1983).

  32. H. Tada, P. C. Paris andG. R. Irwin, “The Stress Analysis of Cracks Handbook” (Del Research Corporation, Hellertown, Pennsylvania, 1973).

    Google Scholar 

  33. J. Brockenbrough andS. Suresh, Brown University Report No. MSM-8451092/1 (September 1986).

  34. F. A. McClintock andJ. B. Walsh, in Proceedings of 4th US National Congress on Applied Mechanics (American Society of Mechanical Engineers, New York, 1962) p. 1015.

  35. S. Nemat-Nasser andH. Horii,J. Geophys. Res. 87 (1982) 6805.

    Google Scholar 

  36. S. Suresh andX. Han, unpublished results (1986).

  37. S. Suresh, L. Ewart, M. Maden, W. Slaughter andM. Nguyen,J. Mater. Sci. 22(3) (1987).

  38. T. Christman andS. Suresh,Eng. Fract. Mech. 23 (1986) 953.

    Google Scholar 

  39. B. Budiansky andJ. O'Connell,Intl. J. Solid Struct. 12 (1976) 81.

    Google Scholar 

  40. J. Lankford,J. Amer. Ceram. Soc. 66 (1983) C-212.

    Google Scholar 

  41. I. W. Chen,ibid. 69 (1986) 181.

    Google Scholar 

  42. S. Suresh andL. A. Sylva, Brown University Report No. MSM-8451092/2 (October 1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewart, L., Suresh, S. Crack propagation in ceramics under cyclic loads. J Mater Sci 22, 1173–1192 (1987). https://doi.org/10.1007/BF01233107

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233107

Keywords

Navigation