Skip to main content
Log in

Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new model for determining elastic/plastic indentation is presented. This model generalizes Johnson's incompressible core model to a compressible material and allows the indentation pressure to be transmitted via a misfitted inclusion core beneath the indenter which is surrounded by a hemispherical plastic zone. The internal stress field inside the core is obtained by applying Eshelby's spherical inclusion problem together with Hill's spherical-cavity expansion analysis. The plastic deformation considered here exactly ensures compatibility between the volume of a material displaced by the indenter and that accommodated by expansion. The analysis explains the essential relationships between the dimensions of the indentation and plastic zone and the dominant material properties; yield stress, hardness and elastic modulus. The solution is extended to evaluate the indentation fracture toughness by taking into account the reduced half-space constraint by the image force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  2. B. R. Lawn, A. G. Evans andP. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.

    Google Scholar 

  3. G. R. Antis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.

    Google Scholar 

  4. S. S. Chiang, D. B. Marshall andA. G. Evans,J. Appl. Phys. 53 (1982) 298.

    Google Scholar 

  5. Idem, ibid. 53 (1982), 312.

    Google Scholar 

  6. K. Tanaka, Y. Kitahara, Y. Ichinose andT. Iimura,Acta Metall. 32 (1984) 1719.

    Google Scholar 

  7. K. Tanaka,Nihon Kinzoku Gakkaishi 48 (1984) 1157 (in Japanese).

    Google Scholar 

  8. R. Hill, “The Mathematical Theory of Plasticity” (Oxford University Press, London, 1950).

    Google Scholar 

  9. K. Johnson,J. Mech. Phys. Solids 18 (1970) 115.

    Google Scholar 

  10. J. D. Eshelby,Proc. Roy. Soc. A241 (1957), 376.

    Google Scholar 

  11. Idem, ibid. A252 (1959), 561.

    Google Scholar 

  12. K. Tanaka,Scripta Metall. 19 (1985) 1183.

    Google Scholar 

  13. R. D. Mindlin,Physics 7 (1936) 85.

    Google Scholar 

  14. S. Timoshenko andJ. N. Goodier, “Theory of Elasticity” (McGraw-Hill, New York, 1951).

    Google Scholar 

  15. D. M. Marsh,Proc. Roy. Soc. A279 (1964) 420.

    Google Scholar 

  16. W. Hirst andM. G. J. W. Howse,ibid. A211 (1969) 492.

    Google Scholar 

  17. S. Nishijima,Trans. NRIM 19 (1977) 327.

    Google Scholar 

  18. Idem, ibid. 20 (1978) 314.

    Google Scholar 

  19. NRIM Fatigue Data Sheet, National Research Institute for Metals, Tokyo, Japan, no. 1–4, (1978), no. 8–10 (1979).

  20. S. Muneki, Y. Kawabe, K. Nakazawa andH. Yaji,Tetsu-to-Hagane 64 (1978) 605 (in Japanese).

    Google Scholar 

  21. W. H. Sutton,Astronautics and Aeronautics (AIAA) August (1966) 46.

  22. A. Kelly “Strong Solids” (Oxford University Press, 1966).

  23. C. M. Perrott,Wear 45 (1977) 293.

    Google Scholar 

  24. T. O. Mulhearn J. Mech. Phys. Solids 7 (1959) 85.

    Google Scholar 

  25. S. Van Der Zwaag, J. T. Raga andJ. E. Field,J. Mater. Sci. 15 (1980) 2965.

    Google Scholar 

  26. J. T. Hagan,ibid. 14 (1979) 2975.

    Google Scholar 

  27. N. H. Burlingame, M S Thesis, University of California, Berkley, (1980).

    Google Scholar 

  28. J. T. Hagan,J. Mater. Sci. 14 (1979) 462.

    Google Scholar 

  29. Idem, ibid. 15 (1980) 1417.

    Google Scholar 

  30. K. Tanaka, unpublished work, 1985.

  31. M. H. Lewis, R. Fung andD. M. R. Taplin,J. Mater. Sci. 16 (1981) 3437.

    Google Scholar 

  32. E. L. Exner, J. R. Pickens andJ. Gurland,Met. Trans. 9A (1978) 736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K. Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model. J Mater Sci 22, 1501–1508 (1987). https://doi.org/10.1007/BF01233154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233154

Keywords

Navigation