Skip to main content
Log in

Evidence for erosion of mouse CpG islands during mammalian evolution

  • Published:
Somatic Cell and Molecular Genetics

Abstract

In housekeeping and many tissue-specific genes, the promoter is embedded in a so-called CpG island. We have compared the available human and mouse DNA sequences with respect to their CpG island properties. While mouse sequences showed a simple gradient distribution of G+C content and CpG densities, man had a distinct peak of sequences with typical CpG island characteristics. Pairwise comparison of 23 orthologous genes revealed that mouse almost always had a less pronounced CpG island than man, or none at all. In both species the requirements for a functional CpG island may be similar in that most DNA regions with a density of six or more CpG per 100 bp remain unmethylated. However, the mouse has apparently experienced more accidental CpG island methylation, suggested by local TpG and CpA excess. We propose that: (1) in mouse the CpG islands do not represent the ancestral state but have been eroded during evolution, and (2) this erosion may be related to the mouse's small body mass and short life-span, allowing for a more relaxed control of gene activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Bird, A.P. (1986).Nature 321209–213.

    Google Scholar 

  2. Gardiner-Garden, M. and Frommer, M. (1987).J. Mol. Biol. 196261–282.

    Google Scholar 

  3. Larsen, F., Gundersen, G., Lopez, R. and Prydz, H. (1992).Genomics 131095–1107.

    Google Scholar 

  4. Monk, M. (1990).Phil. Trans. R. Soc. London, Ser. B 326299–312.

    Google Scholar 

  5. Stöger, R., Kubička, P., Liu, C.-G., Kafri, T., Razin, A., Cedar, H., and Barlow, D.P. (1993).Cell 7361–71.

    Google Scholar 

  6. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M., and Surani, M.A. (1993).Nature 362751–755.

    Google Scholar 

  7. Antequera, F., Boyes, J., and Bird, A. (1990).Cell 62503–514.

    Google Scholar 

  8. Tazi, J., and Bird, A. (1990).Cell 60909–920.

    Google Scholar 

  9. Sved, J., and Bird, A. (1990).Proc. Natl. Acad. Sci. U.S.A. 874692–4696.

    Google Scholar 

  10. Cross, S., Kovarik, P., Schmidtke, J., and Bird, A. (1991).Nucleic Acids Res. 191469–1474.

    Google Scholar 

  11. Aïssani, B., and Bernardi, G. (1991).Gene 106173–183.

    Google Scholar 

  12. Aïssani, B., and Bernardi, G. (1991).Gene 106185–195.

    Google Scholar 

  13. Bucher, P., and Trifonov, E.N. (1986).Nucleic Acids Res. 1410009–10026.

    Google Scholar 

  14. Devereux, J., Haeberli, P., and Smithies, O. (1984).Nucleic Acids Res. 12387–395.

    Google Scholar 

  15. Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-Rotival, M., and Rodier, F. (1985).Science 228953–958.

    Google Scholar 

  16. Saccone, S., De Sario, A., Della Valle, G., and Bernardi, G. (1992).Proc. Natl. Acad. Sci. U.S.A. 894913–4917.

    Google Scholar 

  17. Bird, A.P., Taggart, M.H., Nicholls, R.D., and Higgs, D.R. (1987).EMBO J. 6999–1004.

    Google Scholar 

  18. Larsen, F., Solheim, J., and Prydz, H. (1993).Hum. Mol. Genet. 2775–780.

    Google Scholar 

  19. Shemer, R., Eisenberg, S., Breslow, J.L., and Razin, A. (1991).J. Biol. Chem. 26623676–23681.

    Google Scholar 

  20. Kochanek, S., Renz, D., and Doerfler, W. (1993).EMBO J. 121141–1151.

    Google Scholar 

  21. Bestor, T. (1987).Nucleic Acids Res. 153835–3843.

    Google Scholar 

  22. Carotti, D., Palitti, F., Lavia, P., and Strom, R. (1989).Nucleic Acids Res. 179219–9229.

    Google Scholar 

  23. Boyes, J., and Bird, A. (1991).Cell 641123–1134.

    Google Scholar 

  24. Boyes, J., and Bird, A. (1992).EMBO J. 11327–333.

    Google Scholar 

  25. Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., and Cedar, H. (1991).Nature 351239–241.

    Google Scholar 

  26. Migeon, B.R., Axelman, J., and Beggs, A.H. (1988).Nature 33593–96.

    Google Scholar 

  27. Holliday, R. (1989).Nature 337311.

    Google Scholar 

  28. Wright, W.E., Pereira-Smith, O.M., and Shay, J.W. (1989).Mol. Cell. Biol. 93088–3092.

    Google Scholar 

  29. Holliday, R. (1987).Science 238163–170.

    Google Scholar 

  30. Holliday, R. (1993). InDNA Methylation: Molecular Biology and Biological Significance, (ed.) Jost, J.P. and Saluz, H.P. (Birkhäuser, Basel), pp. 452–468.

    Google Scholar 

  31. Human Gene Mapping 11 (1991).Cytogenet Cell Genet 581–2200.

    Google Scholar 

  32. Ghazi, H., Magewu, A.N., Gonzales, F., and Jones, P.A. (1990).Development 1990 Suppl. 115–123.

  33. Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992).Genes Dev. 6705–714.

    Google Scholar 

  34. Lock, L.F., Melton, D.W., Caskey, C.T., and Martin, G.R. (1986).Mol. Cell. Biol. 6914–924.

    Google Scholar 

  35. Stein, R., Sciaky-Gallili, N., Razin, A., and Cedar, H. (1983).Proc. Natl. Acad. Sci. U.S.A. 802422–2426.

    Google Scholar 

  36. Mitchell, P.J., Carothers, A.M., Han, J.H., Harding, J.D., Kas, E., Venolia, L., and Chasin, L.A. (1986).Mol. Cell. Biol. 6425–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, K., Clay, O., Takahashi, T. et al. Evidence for erosion of mouse CpG islands during mammalian evolution. Somat Cell Mol Genet 19, 543–555 (1993). https://doi.org/10.1007/BF01233381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233381

Keywords

Navigation