Skip to main content
Log in

Striatal dopamine in motor activation and reward-mediated learning: steps towards a unifying model

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

On the basis of behavioural evidence, dopamine is found to be involved in two higher-level functions of the brain: reward-mediated learning and motor activation. In these functions dopamine appears to mediate synaptic enhancement in the corticostriatal pathway. However, in electrophysiological studies, dopamine is often reported to inhibit corticostriatal transmission. These two effects of dopamine seem incompatible. The existence of separate populations of dopamine receptors, differentially modulating cholinergic and glutamatergic synapses, suggests a possible resolution to this paradox.

The synaptic enhancement which occurs in reward-mediated learning may also be involved in dopamine-mediated motor activation. The logical form of reward-mediated learning imposes constraints on which mechanisms can be considered possible. Dopamine D1 receptors may mediate enhancement of corticostriatal synapses. On the other hand, dopamine D2 receptors on cholinergic terminals may mediate indirect, inhibitory effects of dopamine on striatal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aiko Y, Hosokawa S, Shima F, Kato M, Kitamura K (1988) Alterations in local cerebral glucose utilization during electrical stimulation of the striatum and globus pallidus in rats. Brain Res 442: 43–52

    Google Scholar 

  • Akaike A, Ohno Y, Sasa M, Takaori S (1987) Excitatory and inhibitory effects of dopamine on neuronal activity of the caudate nucleus neurons in vitro. Brain Res 418: 262–272

    Google Scholar 

  • Ariano MA (1987) Comparison of dopamine binding sites in rat superior cervical ganglion and caudate nucleus. Brain Res 421: 245–254

    Google Scholar 

  • Arnfred T, Randrup A (1968) Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behavior. Acta Pharmacol Toxicol 26: 384–394

    Google Scholar 

  • Barto AG, Sutton RS, Brouwer PS (1981) Associative search network: a reinforcement learning associative memory. Biol Cybern 40: 201–211

    Google Scholar 

  • Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans Syst Man Cybern SMC 13: 834–846

    Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6: 173–196

    Google Scholar 

  • Beninger RJ, Hoffman DC, Mazurski EJ (1989) Receptor subtype-specific dopaminergic agents and unconditioned and conditioned behavior. Neurosci Biobehav Rev (submitted)

  • Benshalom G, White EL (1988) Dendritic spines are susceptible to structural alterations induced by degeneration of their presynaptic afferents. Brain Res 443: 377–382

    Google Scholar 

  • Black J, Belluzzi JD, Stein L (1985) Reinforcement delay of one second severely impairs acquisition of brain self-stimulation. Brain Res 359: 113–119

    Google Scholar 

  • Bluth R, Langnickel R, Ott T (1985) Modulation by dopaminergic and serotonergic systems of cholinergic interneurons in nucleus accumbens and striatum. Pol J Pharmacol Pharm 37: 753–763

    Google Scholar 

  • Bouyer JJ, Park DH, Joh TH, Pickel VM (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res 302: 267–275

    Google Scholar 

  • Brown JR, Arbuthnott GW (1983) The electrophysiology of dopamine (D2) receptors: a study of the action of dopamine on corticostriatal transmission. Neuroscience 10: 349–355

    Google Scholar 

  • Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G (1987) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20: 757–771

    Google Scholar 

  • Carlson JH, Bergstrom DA, Walters JR (1987) Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: a neurophysiological study. Brain Res 400: 205–218

    Google Scholar 

  • Carvey PM, Kao LC, Tanner CM, Goetz CG, Klawans HL (1986) Effect of antimuscarinic agents on haloperidol induced behavioural hypersensitivity. Eur J Pharmacol 120: 193–199

    Google Scholar 

  • Cherubini E, Lanfumey L (1987) An inward calcium current underlying regenerative calcium potentials in rat striatal neurons in vitro enhanced by BAY K 8644. Neuroscience 21: 997–1005

    Google Scholar 

  • Cherubini E, Herrling PL, Lanfumey L, Stanzione P (1988) Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. J Physiol 400: 677–690

    Google Scholar 

  • Chesselet MF (1984) Presynaptic regulation of neurotransmitter release in the brain: facts and hypotheses. Neuroscience 12: 347–374

    Google Scholar 

  • Chiodo LA, Berger TW (1986) Interactions between dopamine and amino acid-induced excitation and inhibition in the striatum. Brain Res 375: 198–203

    Google Scholar 

  • Christensen AV, Arnt J, Hyttel J, Larsen J-J, Svenson O (1984) Pharmacological effects of a specific dopamine D1 antagonist SCH23390 in comparison with neuroleptics. Life Sci 34: 1529–1540

    Google Scholar 

  • Connor JD (1970) Caudate nucleus neurons: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J Physiol 208: 691–703

    Google Scholar 

  • Decsi L, Nagy J (1988) Independent GABAergic and cholinergic modulation of apomorphine-induced stereotyped rearing in the rat. Neuropharmacology 27: 281–285

    Google Scholar 

  • DeLong MR, Alexander GE, Mitchell SJ, Richardson RT (1986) The contribution of basal ganglia to limb control. Prog Brain Res 64: 161–174

    Google Scholar 

  • Deniau JM, Chevalier G (1985) Disinhibition as a basic process in the expression of striatal functions II. The striatonigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res 334: 227–233

    Google Scholar 

  • DiChiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci 85: 5274–5278

    Google Scholar 

  • DiFiglia M (1987) Synaptic organisation of cholinergic neurons in the monkey striatum. J Comp Neurol 255: 245–258

    Google Scholar 

  • Dodt HU, Misgeld U (1986) Muscarinic slow excitation and muscarinic inhibition of synaptic transmission in the rat neostriatum. J Physiol 380: 593–608

    Google Scholar 

  • Dolin S, Little H, Hudspith M, Pagonis C, Littleton J (1987) Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26: 275–279

    Google Scholar 

  • Dunnett SB, Isacson O, Sirinathsinghji DJS, Clarke DJ, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24: 813–820

    Google Scholar 

  • Eccles JC (1983) Calcium in long-term potentiation as a model for memory. Neuroscience 10: 1071–1081

    Google Scholar 

  • El-Defrawi MH, Graig TJ (1984) Neuroleptics, extrapyramidal symptoms and serum calcium levels. Compr Psychiatry 25: 539–545

    Google Scholar 

  • Engel JA, Fahlke C, Hulthe P, Hard E, Johannessen K, Snape B, Svensson L (1988) Biochemical and behavioral evidence for an interaction between ethanol and calcium channel antagonists. J Neural Transm 74: 181–193

    Google Scholar 

  • Fibiger HC, LePiane FG, Jakubovic A, Phillips AG (1987) The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J Neurosci 7: 3888–3896

    Google Scholar 

  • Filloux FM, Wamsley JK, Dawson TM (1987) Dopamine D-2 auto- and postsynaptic receptors in the nigrostriatal system of the rat brain: localization by quantitative autoradiography with [3H] sulpiride. Eur J Pharmacol 138: 61–68

    Google Scholar 

  • Fray P, Dunnett S, Iverson S, Bjorklund A, Stenevi U (1983) Nigral transplants reinervating the dopamine-depleted neostriatum can sustain intracranial self-stimulation. Science 219: 416–419

    Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215

    Google Scholar 

  • Fujiwara H, Kato N, Shuntoh H, Takaka C (1987) D2-Dopamine receptor-mediated inhibition of intracellular Ca++ mobilization and release of acetylcholine from guineapig neostriatal slices. Br J Pharmacol 91: 287–297

    Google Scholar 

  • Gallistel CR, Davis AJ (1983) Affinity for the dopamine D2 receptor predicts neuroleptic potency in blocking the reinforcing effect of MFB stimulation. Pharmacol Biochem Behav 19: 867–872

    Google Scholar 

  • Gerber GJ, Sing J, Wise RA (1981) Pimozide attenuates lever pressing for water reinforcement in rats. Pharmacol Biochem Behav 14: 201–205

    Google Scholar 

  • Gjedde A (1987) Does deoxyglucose uptake in the brain reflect energy metabolism? Biochem Pharmacol 36: 1853–1861

    Google Scholar 

  • Godukhin OV, Zharikova AD, Dudantsev AYu (1984) Role of presynaptic dopamine receptors in regulation of the glutamatergic neurotransmission in rat neostriatum. Neuroscience 12: 377–383

    Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibres. J Comp Neurol 234: 317–333

    Google Scholar 

  • Groves PM (1983) A theory of the functional organisation of the neostriatum and the neostriatal control of voluntary movement. Brain Res Rev 5: 109–132

    Google Scholar 

  • Hattori T, Fibiger HC (1982) On the use of lesions of afferents to localize neurotransmitter receptor sites in the striatum—dendritic spines and D2 receptors after cortical ablation. Brain Res 238: 245–250

    Google Scholar 

  • Helmreich I, Reimann W, Hertting G, Starke K (1982) Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucleus pharmacologically different? Neuroscience 7: 1559–1566

    Google Scholar 

  • Hemmings HC, Greengard P (1986) DARPP-32, a dopamine-regulated phosphoprotein. In: Gispen WH, Routtenberg A (eds) Prog Brain Res 69: 149–159. Elsevier Science Publishers BV

  • Hemmings HC, Walaas SI, Ouimet CC, Greengard P (1987) Dopamine regulation of protein phosphorylation in the striatum: DARPP-32. Trends Neurosci 10: 377–383

    Google Scholar 

  • Hendricks SE, Gerall AA (1970) Acquisition and extinction of an instrumental response as a function of delay of intracranial stimulation reward and amount of training. Psychon Sci 19: 187–188

    Google Scholar 

  • Herrling PL (1985) Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: evidence for its mediation by quisqualate or kainate-receptors. Neuroscience 14: 417–426

    Google Scholar 

  • Herrling PL, Hull CD (1980) Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res 192: 441–462

    Google Scholar 

  • Hilgard ER, Marquis DG (1964) Conditioning and learning. Methuen, London

    Google Scholar 

  • Hirata K, Yim CY, Mogenson GJ (1984) Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res 321: 1–8

    Google Scholar 

  • Hoffman IS, Talmaciu RK, Cubeddu LX (1986) Interaction between endogenous dopamine and dopamine agonists at release modulatory receptors. Multiple effects of neuronal uptake inhibitors on transmitter release. J Pharmacol Exp Ther 238: 437–446

    Google Scholar 

  • Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 269: 219–234

    Google Scholar 

  • Johnson SW, Palmer MR, Freedman R (1983) Effects of dopamine on spontaneous and evoked activity of caudate neurons. Neuropharmacology 22: 843–851

    Google Scholar 

  • Joyce JN, Marshall JF (1985) Striatal topography of D-2 receptors correlates with indexes of cholinergic neuron localization. Neurosci Lett 53: 127–131

    Google Scholar 

  • Joyce JN, Marshall JF (1987) Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: localization to intrinsic neurons and not to neocortical afferents. Neuroscience 20: 773–795

    Google Scholar 

  • Kitai ST (1981) Electrophysiology of the corpus striatum and brain stem integrating systems. In: Brookhart JM, Mountcastle VB, Brookes VB (eds) Handbook of physiology: the nervous system. American Physiological Society, Bethesda, pp 997–1016

    Google Scholar 

  • Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39: 669–674

    Google Scholar 

  • Kubota Y, Inagaki S, Shimeda S, Kito S, Wu J-Y (1987) Glutamate decarboxylase-like immuno-reactive neurons in the rat caudate putamen. Brain Res Bull 18: 687–697

    Google Scholar 

  • Kurumiya S, Nakajima S (1988) Dopamine D1 receptors in the nucleus accumbens: involvement in the reinforcing effect of tegmental stimulation. Brain Res 448: 1–6

    Google Scholar 

  • Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10: 1105–1120

    Google Scholar 

  • Lynch MR, Wise RA (1985) Relative effectiveness of pimozide, haloperidol and trifluoperazine on self-stimulation rate-intensity functions. Pharmacol Biochem Behav 23: 777–780

    Google Scholar 

  • Lyon M, Robbins T (1975) The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. Current Developments in Psychopharmacology 2: 79–163

    Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522

    Google Scholar 

  • Marshall JF, Ungerstedt U (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur J Pharmacol 41: 361–367

    Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215

    Google Scholar 

  • Mercuri N, Bernardi G, Calabresi P, Cotugno A, Levi G, Stanzione P (1985) Dopamine decreases excitability in rat striatal neurons by pre- and postsynaptic mechanisms. Brain Res 358: 110–121

    Google Scholar 

  • Miller R (1981) Meaning and purpose in the intact brain. Oxford University Press

  • Miller R (1988) Corticostriatal and cortico-limbic circuits: a two-tiered model of learning and memory functions. In: Markowitsch HJ (ed) Information processing by the brain. Hans Huber, New York, pp 179–197

    Google Scholar 

  • Mitchell PR, Doggett NS (1980) Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs. Life Sci 26: 2073–2081

    Google Scholar 

  • Murphy SN, Thayer SA, Miller RJ (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci 7: 4145–4158

    Google Scholar 

  • Nakajima S (1986) Suppression of operant responding in the rat by dopamine D1 receptor blockade with SCH23390. Physiol Psychol 14: 111–114

    Google Scholar 

  • Nakajima S, McKenzie GM (1986) Reduction of the rewarding effect of brain stimulation by a blockade of dopamine D1 receptor with SCH23390. Pharmacol Biochem Behav 24: 919–923

    Google Scholar 

  • Nieoullon A, Kerkerian L, Dusticier N (1983) Presynaptic dopaminergic control of high affinity glutamate uptake in the striatum. Neurosci Lett 43: 191–196

    Google Scholar 

  • Olds J (1963) Mechanisms of instrumental conditioning. Electroencephalogr Clin Neurophysiol [Suppl 24]: 219–234

    Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J Comp Physiol Psychol 47: 419–427

    Google Scholar 

  • Peris J, Dwoskin LP, Zahniser NR (1988) Biphasic modulation of evoked [3H] D-aspartate release by D-2 dopamine receptors in rat striatal slices. Synapse 2: 450–456

    Google Scholar 

  • Phillips AG, Carter DA, Fibiger HC (1976) Dopaminergic substrates of intracranial selfstimulation in the caudate-putamen. Brain Res 104: 221–232

    Google Scholar 

  • Robbins TW (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264: 57–59

    Google Scholar 

  • Robertson GS, Robertson HA (1986) Synergistic effects of D1 and D2 dopamine agonists on turning behavior in rats. Brain Res 384: 387–390

    Google Scholar 

  • Rolls ET, Thorpe SJ, Boytim M, Szabo I, Perrett DI (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12: 1201–1212

    Google Scholar 

  • Rowlands GJ, Roberts PJ (1980) Activation of dopamine receptors inhibits calcium-dependent glutamate release from cortico-striatal terminals in vitro. Eur J Pharmacol 62: 241–242

    Google Scholar 

  • Royall DR, Klemm WR (1981) Dopaminergic mediation of reward: evidence gained using a natural reinforcer in a behavioral contrast paradigm. Neurosci Lett 21: 223–230

    Google Scholar 

  • Sanna E, Head GA, Hanbauer I (1986) Evidence for a selective localization of voltagesensitive Ca2 + channels in nerve cell bodies of corpus striatum. J Neurochem 47: 1552–1557

    Google Scholar 

  • Scheel-Kruger J (1986) Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol Scand [Suppl 107] 73: 1–54

    Google Scholar 

  • Schultz W (1982) Depletion of dopamine in the striatum as an experimental model of parkinsonism: direct effects and adaptive mechanisms. Prog Neurobiol 18: 121–166

    Google Scholar 

  • Shippenburg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mΜ- and kappa-opioid agonists. Brain Res 436: 169–172

    Google Scholar 

  • Sirinathsinghji DJS, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24: 803–811

    Google Scholar 

  • Skattenbol A, Hruska RE, Hawthorn M, Triggle DJ (1988) Kainic acid lesions decrease striatal dopamine receptors and 1,4-dihydropyridine sites. Neurosci Lett 89: 85–89

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettogrew KD, Sakurada O, Shinohasa M (1977) The [14C] deoxyglucose method for the measurement of local cerebral glucose utilizationy: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Google Scholar 

  • Somogyi P, Bolam JO, Smith AD (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopy study using the Golgi-peroxidase transport-degeneration procedure. J Comp Neurol 195: 567–584

    Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982) Attenuation by haloperidol of place preference conditioning using food reinforcement. Psychopharmacology 77: 379–382

    Google Scholar 

  • Stellar JR, Stellar E (1985) The neurobiology of motivation and reward. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 35: 2281–2296

    Google Scholar 

  • Stoof JC, DeBoer Th, Sminia P, Mulder AH (1982) Stimulation of D2-dopamine receptor in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of gamma-aminobutyric acid, glutamate or serotonin. Eur J Pharmacol 84: 211–214

    Google Scholar 

  • Stoof JC, Verheijden PFHM, Leyson JE (1987) Stimulation of D2-receptors in rat nucleus accumbens slices inhibits dopamine and acetylcholine release but not cyclic AMP formation. Brain Res 423: 364–368

    Google Scholar 

  • Szechtman H (1983) Peripheral sensory input directs apomorphine-induced circling in rats. Brain Res 264: 332–335

    Google Scholar 

  • Szechtman H, Ornstein K, Teitelbaum P, Golani I (1985) The morphogenesis of stereotyped behavior induced by the dopamine receptor agonist apomorphine in the laboratory rat. Neuroscience 14: 783–798

    Google Scholar 

  • Toan DL, Schultz W (1985) Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity. Neuroscience 15: 683–694

    Google Scholar 

  • Trugman JM, Wooten GF (1986) The effects of L-DOPA on regional cerebral glucose utilization in rats with unilateral lesions of the substantia nigra. Brain Res 379: 264–274

    Google Scholar 

  • Trugman JM, Geary WA, Wooten GF (1986) Localization of D2 dopamine receptors to intrinsic striatal neurons by quantitative autoradiography. Nature 323: 267–269

    Google Scholar 

  • Trugman JM, Wooten GF (1987) Selective D1 and D2 dopamine agonists differentially altar basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions. J Neurosci 7: 2927–2935

    Google Scholar 

  • Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol Scand [Suppl 367]: 49–68

    Google Scholar 

  • Vives F, Mogenson GJ (1986) Electrophysiological study of the effects of D1 and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat. Neuroscience 17: 349–359

    Google Scholar 

  • Waszczak BL, Lee EK, Ferraro T, Hare TA, Walters JR (1984) Single unit responses of substantia nigra pars reticulata neurons to apomorphine: effects of striatal lesions and anesthesia. Brain Res 306: 307–318

    Google Scholar 

  • Watson DL, Carpenter CL, Marks SS, Greenburg DA (1988) Striatal calcium channel antagonist receptors in Huntingtons's disease and Parkinson's disease. Ann Neurol 23: 303–305

    Google Scholar 

  • Weick BG, Walters JR (1987) Effects of D1 and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: D1/D2 coactivation induces potentiated responses. Brain Res 405: 234–246

    Google Scholar 

  • Wickens J (1988) Electrically coupled but chemically isolated synapses: dendritic spines and calcium in a rule for synaptic modification. Prog Neurobiol 31: 507–528

    Google Scholar 

  • Widrow B, Gupta NK, Maitra S (1973) Punish/reward: learning with a critic in adaptive theshold systems. IEEE Trans Syst Man Cybern SMC-3: 455–465

    Google Scholar 

  • Wilson CJ, Chang HT, Kitai ST (1982) Origins of postsynaptic potentials evoked in identified rat neostriatal neurons by stimulation in substantia nigra. Exp Brain Res 45: 157–167

    Google Scholar 

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3: 383–398

    Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35: 227–263

    Google Scholar 

  • Wise RA, Spindler J, Legault L (1978) Major attenuation of food reward with performancesparing doses of pimozide in the rat. Can J Psychol 32: 77–85

    Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW, Kornfeld EC (1983) Effect of a stereospecific D2-dopamine agonist on acetylcholine concentration in corpus striatum of rat brain. J Neural Transm 58: 55–67

    Google Scholar 

  • Wooten GF, Collins RC (1983) Effects of dopaminergic stimulation on functional brain metabolism in rats with substantia nigra lesions. Brain Res 263: 267–275

    Google Scholar 

  • Wu PH, Pham T, Naranjo CA (1987) Nifedipine delays the acquisition of tolerance to ethanol. Eur J Pharmacol 139: 233–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wickens, J. Striatal dopamine in motor activation and reward-mediated learning: steps towards a unifying model. J. Neural Transmission 80, 9–31 (1990). https://doi.org/10.1007/BF01245020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245020

Keywords

Navigation