Skip to main content
Log in

Power law and log law velocity profiles in turbulent boundary-layer flow: equivalent relations at large Reynolds numbers

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The open equations of a turbulent boundary layer subjected to a pressure gradient analysed for classical two layers (inner wall and outer wake), while matched in the overlap region of MAX through the Millikan-Kolmogorov hypothesis leads to an open functional equation, and its classical solution for the velocity distribution is the log. region. It is shown here that the same open functional equation also predicts a power law velocity distribution and a power law skin friction in the overlap region. The uniformly valid solution for the composite wall power law and wake velocity profile is obtained. The connection between the power law and the classical log. law solutions of the open functional equation is analyzed. At large Reynolds number, the power law solutions reduce to the classical log. law solutions, and the equivalence predicts a certain relationship between the constants in power and log. laws. The results are compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barenblatt, G. I.: Scaling laws for fully developed turbulent shear flow, Part I: Basic hypothesis and analysis. J. Fluid Mech.248, 513–520 (1993).

    Google Scholar 

  2. Barenblatt, G. I., Chorin A., Prostokishin, V. M.: Scaling laws for fully developed pipe flow. Appl. Mech. Rev.50, 413–429 (1997).

    Google Scholar 

  3. Cipra, B.: A new theory of turbulence causesa stir among experts. Science272, 951 (1996).

    Google Scholar 

  4. Nikuradse, J.: Gesetzmäßigkeiten der turbulenten Strömungen in glatten Rohren. VDI Forschungsheft N356, VDI (1932).

  5. Prandtl, L.: The mechanic of viscous fluid. In: Aerodynamic theory (Durand, W. F., ed.)3, 34–208 (1935).

  6. Zagarola, M., Smits, A. J.: Mean flow scaling of turbulent pipe flow. J. Fluid Mech.373, 33–79 (1998).

    Article  Google Scholar 

  7. Schlichting H: Boundary layer theory. New York: Mc-Graw Hill 1968.

    Google Scholar 

  8. Duncan, W. J., Thom, A. S., Young, A. D.: Mechanics of fluids. Belfast: ELBS Edward Arnold 1967.

    Google Scholar 

  9. Kailasnath, P.: Reynolds number effect and the momentum flux in turbulent boundary layer. Ph. D. Thesis, Mason Lab., Yale University 1993.

  10. Zagarola, M. V., Perry, A. E., Smits, A. J.: Log law or power law: The scaling in overlap region. Phys. Fluids9, 2094–2100 (1997).

    Article  Google Scholar 

  11. Zagarola, M. V.: Mean flow scaling in turbulent pipe flow. Ph. D. Thesis, Princeton University 1996.

  12. George, W., Castilo, L.: Zero pressure gradient turbulent boundary layer. Appl. Mech. Rev.50, 689–729 (1997).

    Google Scholar 

  13. Djenidi, L., Dubief, Y., Antonia, R. A.: Advantages of using a power law in a lowR θ turbulent boundary layer. Exp. Fluids22, 348–350 (1997).

    Article  Google Scholar 

  14. Barenblatt, G. I., Chorin A. J., Hald, O. H., Prostokishin, V. M.: Structure of the zero-pressure gradient turbulent boundary layer. Proc. Natl. Acad. Sci, USA94, 7817–7819 (1997).

    Google Scholar 

  15. Hites, M. H.: Scaling of high Reynolds number turbulent boundary layer in the national diagnostic facility. Ph. D. Thesis, IIT Illinois, Chicago 1997.

    Google Scholar 

  16. Zagarola, M. V., Smits, A. J.: A new mean velocity scaling for turbulent boundary layers. Proc. 1998 ASME, FEDSM'98-4950, 1–6 (1998).

  17. Wardsmith, A. J.: Internal fluid flow. Oxford: Clarendon Press 1983.

    Google Scholar 

  18. Millikan, C. B.: A critical discussion of turbulent flow in channels and circular tubes. Proc. 5th Int. Cong. Appl. Mech. 386–392 (1938).

  19. Afzal, N.: Fully developed turbulent flow in a pipe: an intermediate layer. Ing. Arch 52, 355–377 (1982).

    Article  Google Scholar 

  20. Clauser, F. H.: The turbulent boundary layer. Adv. Appl. Mech.4, 2–56 (1956).

    Google Scholar 

  21. Coles, D.: The law of the wake in the turbulent boundary layer. Rand Corp. Rept. (1962).

  22. Coles, D.: The young persons guide to the data. Proc. Computations of Turbulent Boundary Layer-1968. AFOSR-IFP-Stanford ConferenceII, 1–45 (1968).

  23. Fernholz, H. H., Finley, P. J.: The incompressible zero pressure gradient turbulent boundary layer. Prog. Aerospace Sci.32, 245–311 (1996).

    Article  Google Scholar 

  24. Barenblatt, G. L.: Scaling laws for tubulent wall bounded shear flows at very large Reynolds numbers. J. Engng Maths36, 361–384 (1999).

    Article  Google Scholar 

  25. Smith, D. W., Walker, J. H.: Skin friction measurements in incompressible flow. NACA Tech. Note4231 (1958).

  26. Purtell, L. P., Klebanoff, P. S., Buckley, F. T.: Turbulent boundary layer at low Reynolds number. Phy. Fluids24, 802–811 (1981).

    Article  Google Scholar 

  27. Osterlund, J. M.: Experimental studies of zero pressure gradient turbulent boundarys layer. Ph. D. Thesis. Royal Inst. Techn., Stockholm 1999.

    Google Scholar 

  28. Afzal, N.: Wake layer in turbulent boundary layer with pressure gradient: a new approach. Invited Lecture in: Asymptotic methods for tubulent shear flows at high Reynolds numbers (Gersten, K., ed.), pp. 95–118. Dordrecht: Kluwer Academic Publishers 1996.

    Google Scholar 

  29. Afzal, N.: Analysis of a turbulent boundary layer subjected to a strong adverse pressure gradient. Int. J. Engng Sci.21, 563–576 (1983).

    Article  Google Scholar 

  30. Townsend, A. A.: The structure of turbulent shear flow. Cambridge: Cambridge University Press 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, N. Power law and log law velocity profiles in turbulent boundary-layer flow: equivalent relations at large Reynolds numbers. Acta Mechanica 151, 195–216 (2001). https://doi.org/10.1007/BF01246918

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01246918

Keywords

Navigation