Skip to main content
Log in

Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Four schizophrenic patients were investigated with dynamic positron emission tomography (PET) using (18F)fluorodeoxyglucose (FDG) and (18F)methylspiperone (MSP) as tracers. Two schizophrenics were on haloperidol therapy at the time of MSP PET. The other two schizophrenics were treated with clozapine, in one of them MSP PET was carried out twice with different daily doses (100 mg and 450 mg respectively). Neuroleptic serum levels were measured in all patients. Results were compared with MSP PET of two drug-free male control subjects and with a previous fluoroethylspiperone (FESP) study of normals. Three hours after tracer injection specific binding of MSP was observed in the striatum in all cases. The striatum to cerebellum ratio was used to estimate the degree of neuroleptic-caused striatal D2 dopamine receptor occupancy. In the haloperidol treated patients MSP binding was significantly decreased, whereas in the clozapine treated patients striatum to cerebellum ratio was normal. Even the increase of clozapine dose in the same patient had no influence on this ratio. Despite the smaller number of patients the study shows for the first time in humans that striatal MSP binding reflects the different D2 dopamine receptor affinities of clozapine and haloperidol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AIMS (1976) Abnormal involuntary movement scale. In: Guy W (ed) ECDEU Assessment Manual. Rockville, Maryland, pp 534–537

  • American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders, 3rd revised edn (DSM-III-R). Washington, DC

  • Andersson U, Eckernäs SA, Hartvig P, Ulin J, Langström B, Häggström JE (1990) Striatal binding of11C-NMSP studied with positron emission tomography in patients with persistent tardive dyskinesia: no evidence for altered dopamine D2 receptor binding. J Neural Transm 79: 215–226

    Google Scholar 

  • Andreasen NC, Carson R, Diksic M, Evans A, Farde L, Gjedde A, Hakim A, Lal S, Nair N, Sedvall G, Tune L, Wong D (1988) Workshop on schizophrenia PET, and dopamine D2 receptors in the human neostriatum. Schizophr Bull 14: 471–484

    PubMed  Google Scholar 

  • Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Gaillard V, Blin J, Huret JD, Loc'h C, Mazière B (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 99: 463–472

    PubMed  Google Scholar 

  • Barrio JR, Satyamurthy N, Huang SC, Keen RE, Nissenson CHK, Hoffman JM, Ackermann RF, Bahn MM, Mazziotta JC, Phelps ME (1989) 3-(2′-(18F)fluoroethylspiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J Cereb Blood Flow Metab 9: 830–839

    PubMed  Google Scholar 

  • Blin J, Baron JC, Cambon H, Bonnet AM, Dubois B, Loc'h C, Mazière B, Agid Y (1989) Striatal dopamine D2 receptors in tardive dyskinesia: PET study. J Neurol Neurosurg Psychiatry 52: 1248–1252

    PubMed  Google Scholar 

  • Burt DR, Creese I, Snyder S (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–327

    PubMed  Google Scholar 

  • Cheng YF, Lundberg T, Bondesson U, Lindström L, Gabrielsson J (1988) Clinical pharmacokinetics of clozapine in chronic schizophrenic patients. Eur J Clin Pharmacol 34: 445–449

    PubMed  Google Scholar 

  • Coenen HH, Laufer P, Stöcklin G, Wienhard K, Pawlik G, Böcher-Schwarz HG, Heiss WD (1987) 3-N-(2-(18F)-fluoroethyl)-spiperone: a novel ligand for cerebral dopamine receptor studies with PET. Life Sci 40: 81–88

    PubMed  Google Scholar 

  • Ereshefsky L, Watanabe MD, Tran-Johnson TK (1989) Drug review: clozapine: an atypical antipsychotic agent. Clin Pharm 8: 691–709

    PubMed  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    PubMed  Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Arch Gen Psychiatry 47: 213–219

    PubMed  Google Scholar 

  • Gerlach J, Casey De, Korsgaard S (1986) Tardive dyskinesia, epidemiology, pathophysiology, and pharmacology. In: Shah NS, Donald AG (eds) Movement disorders. Plenum, New York London, pp 119–147

    Google Scholar 

  • Hall H, Wedel I, Halldin C, Kopp J, Farde L (1990) Comparison of the in vitro receptor binding properties of N-(3H)raclopride to rat and human brain membranes. J Neurochem 55: 2048–2057

    PubMed  Google Scholar 

  • Hamacher K, Nebeling B, Coenen HH, Stöcklin G (1990) (18F)N-methyl-spiperone: direct N.C.A. nucleophilic (18F)fluorination of N-methyl-4-nitrospiperone for remote controlled routine production of N.C.A. (18F)MSP. J Label Comp Radiopharm (in press)

  • Hartvig P, Eckernäs SA, Ekblom B, Lindström L, Lundqvist H, Axelsson S, Fasth KJ, Gullberg P, Langström B (1988) Receptor binding and selectivity of three11C-labelled dopamine receptor antagonists in the brain of Rhesus monkeys studied with positron emission tomography. Acta Neurol Scand 77: 314–321

    PubMed  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic PET of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4: 212–223

    PubMed  Google Scholar 

  • Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and in the prefrontal cortex of freely moving rats. Psychopharmacol Bull 25: 383–389

    PubMed  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenia. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45: 789–796

    PubMed  Google Scholar 

  • Klawans HL, Goetz CG, Perlik S (1980) Tardive dyskinesias. Review and update. Am J Psychiatry 137: 900–908

    PubMed  Google Scholar 

  • Lane RF, Blaha CD, Rivet JM (1988) Selective inhibition of mesolimbic dopamine release following chronic administration of clozapine, involvement of noradrenergic receptors demonstrated in vivo voltammetry. Brain Res 460: 398–401

    PubMed  Google Scholar 

  • Litton J, Bergström M, Eriksson L, Bohm C, Blomqvist G, Kesselberg M (1984) Performance study of the PC-384 positron camera system for the brain. J Comput Assist Tomogr 8: 74–87

    PubMed  Google Scholar 

  • Lundberg T, Lindström LH, Hartvig P, Eckernäs SA, Ekblom E, Lundqvist H, Fasth KJ, Gullberg P, Langström B (1989) Striatal and frontal cortex binding of 11-C-labelled clozapine visualized by positron emission tomography (PET) in drug free schizophrenics and healthy volunteers. Psychopharmacology 99: 8–12

    PubMed  Google Scholar 

  • Matz R, Rick W, Oh D, Thompson H, Gershon S (1974) Clozapine — a potential antipsychotic agent without extrapyramidal manifestations. Curr Ther Res 16: 687–695

    PubMed  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) The ratios of serotonine2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 25: 390–392

    PubMed  Google Scholar 

  • Meltzer HY, Stahl SM (1976) The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2: 19–76

    PubMed  Google Scholar 

  • Richelson E (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J Clin Psychiatry 45: 331–336

    PubMed  Google Scholar 

  • Rupniak NMJ, Mann S, Hall MD, Fleminger S, Kilpatrick G, Jenner P, Marsden CD (1984) Differential effects of continuous administration for 1 year of haloperidol or sulpiride on striatal dopamine function in the rat. Psychopharmacology 84: 503–511

    PubMed  Google Scholar 

  • Rupniak NM, Hall MD, Mann S, Fleminger S, Kilpatrick G, Jenner P, Marsden CD (1985) Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochem Pharmacol 34: 2755–2763

    PubMed  Google Scholar 

  • Sedvall G (1990) PET imaging of dopamine receptors in human basal ganglia: relevance to mental illness. TINS 13: 302–308

    PubMed  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1: 132–152

    Google Scholar 

  • Simpson G, Varga E (1974) Clozapine — a new antipsychotic agent. Curr Ther Res 16: 679–686

    PubMed  Google Scholar 

  • Smith M, Wolf AP, Brodie JD, Arnett CD, Barouche F, Shiue CY, Fowler JS, Russel JAG, MacGregor RR, Wolkin A, Angrist B, Rotrosen J, Peselow E (1988) Serical (18F)N-ethylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry 23: 653–663

    PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    PubMed  Google Scholar 

  • Stahl SM, Wets KM (1988) Clinical pharmacology of schizophrenia. In: Bebbington P, McGuffin P (eds) Schizophrenia: the major issues. Heinemann Professional Publishing, Halleycourt Jordan Hill Oxford, pp 135–157

    Google Scholar 

  • Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350: 614–619

    PubMed  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    PubMed  Google Scholar 

  • Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron emission tomography. Science 221: 1264–1266

    PubMed  Google Scholar 

  • White JF, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057

    PubMed  Google Scholar 

  • Wienhard K, Coenen HH, Pawlik G, Rudolf J, Laufer P, Jovkar S, Stöcklin G, Heiss WD (1990) PET studies of dopamine receptor distribution using (18F)fluoroethylspiperone: findings in disorders related to the dopaminergic system. J Neural Transm (Gen Sect) 81: 195–213

    Google Scholar 

  • Wolkin A, Brodie JD, Barouche F, Rotrosen J (1989) Dopamine receptor occupancy and plasma haloperidol levels. Arch Gen Psychiatry 46: 482–483

    PubMed  Google Scholar 

  • Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson SD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O'Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karbe, H., Wienhard, K., Hamacher, K. et al. Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol. J. Neural Transmission 86, 163–173 (1991). https://doi.org/10.1007/BF01250702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250702

Keywords

Navigation