Skip to main content
Log in

Naltrexone potentiates 4-aminopyridine seizures in the rat

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The effects of a pharmacological blockade of the mu opiate receptors on the manifestation of tonic-clonic seizures were investigated in freely moving animals. 4-aminopyridine, a specific blocker of the neuronal K+ channels was used to produce generalized convulsions. After pretreatment of adult rats with 1 mg/kg naltrexone HCl, 3, 5, 7, 9, 14 mg/kg 4-aminopyridine was injected intraperitoneally, and the latencies of the symptoms generated by 4-aminopyridine were measured. Naltrexone HCl decreased these latencies and enhanced the seizures significantly. The experiments provided further evidence for the existence of a tonic anticonvulsant opioid system in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andén N-E, Leander S (1979) Effects of 4-aminopyridine on the turnover of monoamines in the central nervous system of the rat. J Neural Transm 44: 1–12

    PubMed  Google Scholar 

  • Baranowska B, Rozbicka G, Jeske W, Abdel-Fattah MH (1984) The role of endogenous opiates in the mechanism of inhibited luteinizing hormone (LH) secretion in women with anorexia nervosa: the effect of naloxone on LH, follicle-stimulating hormone, prolactin and β-endorphin secretion. J Clin Endocrinol Metab 59: 412–416

    PubMed  Google Scholar 

  • Casamenti F, Corradetti R, Löffelholz K, Mantovani P, Pepeu G (1982) Effects of 4-aminopyridine on acetylcholine output from the cerebral cortex of the ratin vivo. Br J Pharmacol 76: 439–445

    PubMed  Google Scholar 

  • Coleman JC, Shenoy AK, Chweh AY, Swinyard EA (1985) An analysis of thein vivo interactions between chemical convulsants and anticonvulsants. Life Sci 37: 749–755

    PubMed  Google Scholar 

  • Corcoran ME, Wada JA (1979) Naloxone and the kindling of seizures. Life Sci 24: 791–796

    PubMed  Google Scholar 

  • Cowan A, Geller EB, Adler MW (1979) Classification of opioids on the basis of change in seizure threshold in rats. Science 206: 465–467

    PubMed  Google Scholar 

  • De Graan PNE, Schrama LH, Brussaard AB, Jork R, Gispen WH (1987) 4-aminopyridine affects synaptosomal protein phosphorylation in rat hippocampal slices. Brain Res 404: 345–349

    PubMed  Google Scholar 

  • Dingledine R, Iversen LL, Breuker E (1978) Naloxone as a GAB A antagonist: evidence from iontophoretic, receptor binding and convulsant studies. Eur J Pharmacol 47: 19–27

    PubMed  Google Scholar 

  • Ennis C, Stephens RJ (1984) A comparison of the effects of meptazinol and morphine on the release of acetylcholine from slices of mouse cerebral cortex. Neuropharmacology 23: 1431–1433

    PubMed  Google Scholar 

  • Foldes FF, Ludvig N, Nagashima H, Vizi ES (1988) The influence of aminopyridines on Ca2+-dependent evoked release of acetylcholine from rat cortex slices. Neurochem Res 13: 761–764

    PubMed  Google Scholar 

  • Frenk H (1983) Pro- and anticonvulsant actions of morphine and the endogenous opioids: involvement and interactions of multiple opiate and non-opiate systems. Brain Res Rev 6: 197–210

    Google Scholar 

  • Gruol DL, Barker JL, Smith TG (1980) Naloxone antagonism of GABA-evoked membrane polarizations in cultured mouse spinal cord neurons. Brain Res 198: 323–332

    PubMed  Google Scholar 

  • Hagan RM, Hughes IE (1984) Opioid receptor sub-types involved in the control of transmitter release in cortex of the brain of the rat. Neuropharmacology 23: 491–495

    PubMed  Google Scholar 

  • Haxthausen EF von (1955) Über Amino-Pyridin und seine Derivate. Arch Exp Pathol Pharmakol 226: 163–171

    Google Scholar 

  • Höllt V, Przewlocki R, Herz A (1978) β-Endorphin-like immunoreactivity in plasma, pituitaries and hypothalamus of rats following treatment with opiates. Life Sci 23: 1057–1066

    PubMed  Google Scholar 

  • Kelsey JE, Belluzzi JD (1982) Endorphin mediation of postictal effects of kindled seizures in rats. Brain Res 253: 337–340

    PubMed  Google Scholar 

  • Kosten TR, Kreek M-J, Ragunath J, Kleber HD (1986) A preliminary study of beta endorphin during chronic naltrexone maintenance treatment in ex-opiate addicts. Life Sci 39: 55–59

    PubMed  Google Scholar 

  • Kosterlitz HW (1985) The Wellcome Foundation Lecture, 1982. The opioid peptides and their receptors. Proc R Soc Lond B225: 27–40

    Google Scholar 

  • Lai WS, Ramkumar V, El-Fakahany EE (1985) Possible allosteric interaction of 4-aminopyridine with rat brain muscarinic acetylcholine receptors. J Neurochem 44: 1936–1942

    PubMed  Google Scholar 

  • Lemeignan M, Millart H, Lamiable D, Molgo J, Lechat P (1984) Evaluation of 4-aminopyridine penetrability into cerebrospinal fluid in anesthetized rats. Brain Res 304: 166–169

    PubMed  Google Scholar 

  • Lewis ME, Pert A, Pert CB, Herkenham M (1983) Opiate receptor localization in rat cerebral cortex. J Comp Neurol 216: 339–358

    PubMed  Google Scholar 

  • Llinás R, Walton K, Sugimori M, Simon S (1982) 3- and 4-aminopyridine in synaptic transmission at the squid giant synapse. In: Lechat P, Thesleff S, Bowman WC (eds) Aminopyridines and similarly acting drugs: effects on nerves, muscles and synapses. Pergamon Press, Oxford, pp 69–79

    Google Scholar 

  • Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn-Schmiedebergs Arch Pharmacol 319: 197–205

    PubMed  Google Scholar 

  • Matsumoto M, Riker WK (1983) Synaptic transmission in low extracellular calcium is preserved by 3,4-diaminopyridine. J Pharmacol Exp Therap 227: 16–21

    Google Scholar 

  • McLean S, Rothman RB, Herkenham M (1986) Autoradiographic localization of μ- and δ-opiate receptors in the forebrain of the rat. Brain Res 378: 49–60

    PubMed  Google Scholar 

  • Mihály A, Bencsik K, Solymosi T (1987) Pharmacology of convulsions mediated by potassium channels: the role of benzodiazepine and opiate receptors. Neuroscience 22 [Suppl]: 1982P

  • Morris BJ, Herz A (1987) Distinct distribution of opioid receptor types in rat lumbar spinal cord. Naunyn-Schmiedebergs Arch Pharmacol 336: 240–243

    PubMed  Google Scholar 

  • Nicoll RA, Siggins GR, Ling N, Bloom FE, Guillemin R (1977) Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study. Proc Natl Acad Sci USA 74: 2584–2588

    PubMed  Google Scholar 

  • Pasantes-Morales H, Arzate ME, Quesada O, Huxtable RJ (1987) Higher susceptibility of taurine-deficient rats to seizures induced by 4-aminopyridine. Neuropharmacology 26: 1721–1725

    PubMed  Google Scholar 

  • Perkins MN, Stone TW (1980) 4-Aminopyridine blockade of neuronal depressant responses to adenosine triphosphate. Br J Pharmacol 70: 425–428

    PubMed  Google Scholar 

  • Puglisi-Allegra S, Cabib S, Oliverio A (1985) Pharmacological evidence for a protective role of the endogenous opioid system on electroshock-induced seizures in the mouse. Neurosci Lett 62: 241–247

    PubMed  Google Scholar 

  • Racké K, Altes U, Baur A-M, Jost D, Schäfer J (1987) Tetraethylammonium ions and 4-aminopyridine prevent opioid inhibition of neurohypophysial oxytocin release. Brain Res 436: 371–373

    PubMed  Google Scholar 

  • Rogawski MA (1985) The A-current: how ubiquitous a feature of exitable cells is it? Trends Neurosci 8: 214–219

    Google Scholar 

  • Rogawski MA, Barker JL (1983) Effects of 4-aminopyridine on calcium action potentials and calcium current under voltage clamp in spinal neurons. Brain Res 280: 180–185

    PubMed  Google Scholar 

  • Sagratella S, Massotti M (1982) Convulsant and anticonvulsant effects of opioids: relationship to GABA-mediated transmission. Neuropharmacology 21: 991–1000

    PubMed  Google Scholar 

  • Spillantini MG, Massotti M (1986) Inhibition of penicillin-induced EEG discharges by low doses of morphine or naloxone in the rabbit. Evidence for a possible non-opioid receptor-mediated mechanism at the sensorimotor cortex. Pharmacol Biochem Behav 24: 1241–1246

    PubMed  Google Scholar 

  • Szente M, Baranyi A (1987) Mechanism of aminopyridine-induced ictal seizure activity in the cat neocortex. Brain Res 413: 368–373

    PubMed  Google Scholar 

  • Tallarida RJ, Jacob LS (1979) The dose-response relation in pharmacology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tempel A, Gardner EL, Zukin RS (1984) Visualization of opiate receptor upregulation by light microscopy autoradiography. Proc Natl Acad Sci USA 81: 3893–3897

    PubMed  Google Scholar 

  • Thesleff S (1980) Aminopyridines and synaptic transmission. Neuroscience 5: 1413–1419

    PubMed  Google Scholar 

  • Urca G, Yitzhaky J, Frenk H (1981) Different opioid systems may participate in post-electroconvulsive shock (ECS) analgesia and catalepsy. Brain Res 219: 385–396

    PubMed  Google Scholar 

  • Wardlaw AC (1985) Practical statistics for experimental biologists. Wiley, New York

    Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels. Nature 299: 74–77

    PubMed  Google Scholar 

  • Wüster M, Schulz R, Herz A (1980) Inquiry into endorphinergic feedback mechanisms during the development of opiate tolerance/dependence. Brain Res 189: 403–411

    PubMed  Google Scholar 

  • Zukin RS, Sugarman JR, Fitz-Syage ML, Gardner EL, Zukin SR, Gintzler AR (1982) Naltrexone-induce opiate receptor supersensitivity. Brain Res 245: 285–292

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihály, A., Bencsik, K. & Solymosi, T. Naltrexone potentiates 4-aminopyridine seizures in the rat. J. Neural Transmission 79, 59–67 (1990). https://doi.org/10.1007/BF01251001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01251001

Keywords

Navigation