Skip to main content
Log in

Is planar thallium-201/fluorine-18 fluorodeoxyglucose imaging a reasonable clinical alternative to positron emission tomographic myocardial viability scanning?

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

This comparative study was performed to determine whether a conventional planar gamma camera optimised for 511-keV imaging can reliably assess myocardial viability using the fluorine-18 fluorodeoxyglucose (FDG) metabolic tracer previously developed for positron emission tomography (PET). Twenty-seven patients with severe ischaemic cardiomyopathy (mean left ventricular ejection fraction: 20%±9%) having clinically indicated nitrogen-13 ammonia/FDG PET myocardial viability studies consented to resting, four-view, planar myocardial thallium-201 perfusion and FDG metabolism imaging. The resultant PET and planar perfusion/metabolism images (PPI) were independently assessed for FDG defect size and perfusion/metabolism mismatch, using a four-point scale, in each of four vascular regions: apex, circumflex, left anterior and posterior descending coronary artery territories. Of 108 regions, 106 were evaluable (two not assessed by PET). There was complete agreement in 70% of coronary vascular territories, giving an unweighted kappa score of 0.56. Moreover, in 94% of segments agreement was within one grade. Interestingly, six of the seven differences of more than one grade occurred in the circumflex coronary territory, which was also the only region for which planar positron imaging underestimated FDG defect size. Three of four moderate areas of perfusion/metabolism mismatch seen with PET were also seen on PPI. PPI showed three small regions of mismatch not seen on PET, whilst the reverse occurred with one other small region of mismatch. Thus, for this PET protocol, PPI provides very similar information on the extent of regional FDG uptake and occurrence of mismatch. This suggests that perfusion/FDG imaging using an adequately collimated conventional planar gamma camera may be used instead of a formal PET viability study for the clinical detection of viable myocardium, making this form of metabolic assessment more widely available throughout the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alderman EL, Fisher LD, Litwin P, Kaiser GC, Myers WO, Maynard C, Levine F, Schloss M. Results of coronary artery surgery in patients with poor left ventricular function (CASS).Circulation 1983; 68: 785–795.

    PubMed  Google Scholar 

  2. Eitzman D, Al-Aouar Z, Kanter HL, Vom Dahl J, Kirsh M, Deeb GM, Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography.J Am Coll Cardiol 1992; 20: 559–565

    PubMed  Google Scholar 

  3. Di Carli MF, Davidson M, Little R, Khanna S, Mody F, Brunken RC, Czernin J, Rokhsar S, Stevenson LW, Laks H, Hawkins R, Schelbert HR, Phelps ME, Maddahi J. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction.Am J Cardiol 1994; 73: 527–533.

    PubMed  Google Scholar 

  4. Schelbert HR. Merits and limitations of radionuclide approaches to viability and future developments.J Nucl Cardiol 1994; 1: 86S-96S.

    Google Scholar 

  5. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing viability in patients with hibernating and stunned myocardium.Circulation 1993; 87: 1–20.

    PubMed  Google Scholar 

  6. Rahimtoola SH. The hibernating myocardium.Am Heart J 1989; 117: 211–220.

    PubMed  Google Scholar 

  7. Tamaki N, Ohtani H, Yamashita K, Magata Y, Yonekura Y, Nohara R, Kambara H, Kawai C, Hirata K, Ban T, Konishi J. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18 deoxyglucose.J Nucl Med 1991; 32: 673–678.

    PubMed  Google Scholar 

  8. Gerber BL, Vanoverschelde J-L, Bol A, Michel C, Robert A, Wijns W, Melin JA. Comparative predictive value of PET imaging during glucose clamp and of Tl-201 SPECT for recovery after revascularisation.Eur J Nucl Med 1994; 21: S49.

    Google Scholar 

  9. Van Lingen A, Huijgens PC, Visser FC, Ossenkoppele GJ, Hoekstra OS, Martens HJM, Huitink H, Herscheid KDM, Green MV, Tuele GJJ. Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma camera.Eur J Nucl Med 1992; 19: 315–321.

    PubMed  Google Scholar 

  10. Van Every B, Kalff V, Bednarz GM, Westgarth PD, Lambrecht RM, Kelly MJ. Planar 511 keV imaging: back to the future [abstract].Aust NZ J Med 1992; 22: 399.

    Google Scholar 

  11. Williams KA, Taillon LA, Stark VJ. Quantitative planar imaging of glucose metabolic activity in myocardial segments with exercise thallium-201 perfusion defects in patients with myocardial infarction: comparison with late (24 hr) redistribution thallium imaging for detection of reversible ischemia.Am Heart J 1992; 124: 294–304

    PubMed  Google Scholar 

  12. Kalff V, Van Every B, Lambrecht RM, Rowe JL, Barton HJ, Leaney P, Jamieson CR, Kelly MJ. Planar cardiac F-18 fluorodeoxyglucose imaging with a conventional gamma camera.Med J Aust 1994; 161: 413–417.

    PubMed  Google Scholar 

  13. Stoll HP, Hellwig N, Alexander C, Oezbek C, Schieffer H, Oberhausen E. Myocardial metabolic imaging by means of fluorine-18 deoxyglucose/technetium-99m sestamibi dual-isotope single-photon emission tomography.Eur J Nucl Med 1994: 21: 1085–1093.

    PubMed  Google Scholar 

  14. Martin ND, Zaret BL, McGowan RL, Wells HP, Flamm MD. Rubidium-81: a new myocardial scanning agent.Radiology 1974; 111: 651–656.

    PubMed  Google Scholar 

  15. Berman DS, Salel AF, De Nardo GL, Mason DT. Non-invasive detection of regional myocardial ischemia using rubidium-81 and the scintillation camera.Circulation 1975; 52: 619–626.

    PubMed  Google Scholar 

  16. Iskandrian AS, Schelbert HR. Myocardial viability assessment: introduction.J Nucl Med 1994; 35: 1S-3S.

    PubMed  Google Scholar 

  17. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle JL, Verbruggen R, Ghyott M. In-target production of [13N] ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures.Appl Radiat Isot 1991; 42: 1095–1098.

    Google Scholar 

  18. Hamacher K, Coenen HH, Stoecklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution.J Nucl Med 1986; 27: 235–238.

    PubMed  Google Scholar 

  19. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S, Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies.J Nucl Med 1991; 32: 699–706.

    PubMed  Google Scholar 

  20. Dunn RF, Freedman B, Bailey IK, Uren RF, Kelly DT. Exercise thallium imaging: location of perfusion abnormalities in single vessel coronary disease.J Nucl Med 1980; 21: 717–722.

    PubMed  Google Scholar 

  21. Currie PJ, Kelly MJ, Kalff V, Anderson ST, Lim YL, Pitt A. Localisation of exercise induced myocardial ischemia with single view and biplanar radionuclide ventriculography: validation in single vessel coronary disease.Eur J Nucl Med 1985; 11: 51–57.

    PubMed  Google Scholar 

  22. Altman DG. Some common problems in medial research, In: Altman DG, ed.Practical statistics for medical research. London: Chapman Hall; 1991: 400–409.

    Google Scholar 

  23. Nohara R, Kambara H, Suzuki Y, Tamaki S, Kadota K, Kawai C, Tamaki N, Torizuka K. Stress scintigraphy using single photon emission computed tomography in the evaluation of coronary artery disease.Am J Cardiol 1984; 53: 1250–1254.

    PubMed  Google Scholar 

  24. DePasquale EE, Nody AC, DePuey EG, Garcia EV, Pilcher G, Bredlau C, Roubin G, Gober A, Gruentzig A, D'Amato P, Berger HJ. Quantitative rotational thallium-201 tomography for identifying and localising coronary artery disease.Circulation 1988; 77: 316–327.

    PubMed  Google Scholar 

  25. Botsch H, Beringer K, Peterson J, Bauer B, Wiedemann H. Single photon emission tomography studies of rubidium-81 in the detection of ischemic heart disease, using a stress reinjection protocol.Eur J Nucl Med 1994; 21: 407–414.

    PubMed  Google Scholar 

  26. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography.J Nucl Med 1991; 32: 565–578.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalff, V., Berlangieri, S.U., Van Every, B. et al. Is planar thallium-201/fluorine-18 fluorodeoxyglucose imaging a reasonable clinical alternative to positron emission tomographic myocardial viability scanning?. Eur J Nucl Med 22, 625–632 (1995). https://doi.org/10.1007/BF01254563

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254563

Key words

Navigation