Skip to main content
Log in

Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Dopamine D 1 and D 2 receptor distributions were studied in the brain of the mouse, rat, guinea pig, cat and monkey by means of in vitro quantitative autoradiography using [3H]SCH 23390 and [3H]CV 205–502 to label D 1 and D 2 subtypes respectively.

The distribution of both subtypes of receptors was similar within the basal ganglia of all species investigated. The highest densities for both subtypes were found in the nucleus caudatus, putamen, nucleus accumbens, olfactory tubercle and substantia nigra.

Outside of the basal ganglia, differences in the distribution of both receptors were found among the species examined in regions such as cerebellum, cortex, hippocampus, superior colliculus and olfactory bulb.

In all species D 1 receptor densities were higher than those of D 2. The absolute amount of both subtypes, however, varied among species.

These results indicate that dopamine receptor distribution is well preserved in the basal ganglia during evolution, although differences among species exist in their distribution outside the basal ganglia and their absolute amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

corpus amygdalae

Acc :

nucleus accumbens

CA 1 :

CA 1 subfield of the hippocampus

CA 2 :

CA 2 subfield of the hippocampus

CgC :

cingular cortex

Cls :

claustrum

Cd :

nucleus caudatus

CPu :

caudate-putamen

DA :

dopamine

DG :

dentate gyrus of the hippocampus

EP :

nucleus entopeduncularis

GP :

globus pallidus

GPl :

globus pallidus, pars lateralis

GPm :

globus pallidus, pars medialis

gr :

granular layer of the cerebellum

IP :

nucleus interpeduncularis

LS :

lateral septum

mol :

molecular layer of the cerebellum

OT :

olfactory tubercle

Pk :

Purkinje cell layer of the cerebellum

Pu :

putamen

SC :

superior colliculus

snc :

substantia nigra, pars compacta

snr :

substantia nigra, pars reticulata

VTA :

area ventralis tegmentalis

References

  • Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Postmortem distribution of dopamine and homovanillic acid in human brain, variations related to age review of the literature. J Neural Transm 45: 81–105

    PubMed  Google Scholar 

  • Aiso M, Shigematsu K, Kebabian W, Potter WZ, Cruciani RA, Saavedra JM (1987) Dopamine D 1 receptors in rat brain: a quantitative autoradiographic study with125I-SCH 23982. Brain Res 408: 281–285

    PubMed  Google Scholar 

  • Altar CA, O'Neil S, Walter RJ Jr, Marshall JF (1984) Brain dopamine and serotonin receptor site revealed by digital subtraction autoradiography. Science 228: 597–600

    Google Scholar 

  • Altar A, Wamsley AM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D 2 and S 2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 16: 517–525

    PubMed  Google Scholar 

  • Altar CA, Marien MR (1987) Picomolar affinity of125I SCH 23982 for D 1 receptors in brain demonstrated with digital subtraction autoradiography. J Neurosci 7: 213–222

    PubMed  Google Scholar 

  • Anden NE, Carlsson A, Dahlström A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3: 523–530

    Google Scholar 

  • Battista A, Fuxe K, Goldstein M, Ogawa M (1971) Mapping of central monoamine neurons in the monkey. Experientia 28: 688–690

    Google Scholar 

  • Baudry M, Martres MP, Schwartz JC (1979) (3H) domperidone: a selective ligand for dopamine receptors. Naunyn Schmiedebergs Arch Pharmacol 308: 231–237

    PubMed  Google Scholar 

  • Bertler A, Rosengren E (1959) Occurrence and distribution of catecholamines in brain. Acta Physiol Scand 47: 350–361

    PubMed  Google Scholar 

  • Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterization of the binding of (3H) SCH 23390, a selective D 1 receptor antagonist ligand in rat striatum. Life Sci 35: 1885–1893

    PubMed  Google Scholar 

  • Bird ED, Iversen LL (1982) Human brain postmortem studies of neurotransmitters and related markers. In: Lajtha A (ed) Handbook of neurochemistry, vol 2, 2nd edn. Plenum Press, pp 255–251

  • Bischoff S, Scatton B, Korf J (1979) Biochemical evidence for a transmitter role of dopamine in the rat hippocampus. Brain Res 165: 161–165

    PubMed  Google Scholar 

  • Bischoff S, Bittiger H, Krauss J (1980) In vivo (3H)spiperone binding to the rat hippocampal formation: involvement of dopamine receptors. Eur J Pharmacol 68: 305–315

    PubMed  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS. Elsevier, Amsterdam, pp 55–123

    Google Scholar 

  • Bouthenet ML, Sales N, Schwartz JC (1985) Autoradiographic localisation of (3H)apomorphine binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol: 1–8

  • Boyson SJ, McGonigle P, Molinoff PB (1986) Quantitative autoradiographic distribution of D 1 and D 2 subtypes of dopamine receptors in rat brain. J Neurosci 6 (11): 3177–3188

    PubMed  Google Scholar 

  • Brodal A (1981) Neurological anatomy, Chapter 12. The cerebral cortex, 3rd edn. Oxford University Press, Oxford New York, pp 788–852

    Google Scholar 

  • Camps M, Cortes R, Gueye B, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience 28: 275–290

    PubMed  Google Scholar 

  • Camus A, Javoy-Agid F, Dubois A, Scatton B (1986) Autoradiographic localization and quantification of dopamine D 2 receptors in normal human brain with (3H) N-n-propylnorapomorphine. Brain Res 375: 135–149

    PubMed  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T, Waldeck B (1958) On the presence of 3-hydro-xytyramine in brain. Science 127: 471

    PubMed  Google Scholar 

  • Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoarnines. Acta Physiol Scand 56 (196): 1–27

    Google Scholar 

  • Carlsson A, Lindqvist J (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144

    Google Scholar 

  • Charuchinda C, Supavilai P, Karobath M, Palacios JM (1987) Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand. J Neurosci 7 (5): 1352–1360

    PubMed  Google Scholar 

  • Cortés R, Probst A, Palacios JM (1984) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in human brain: brainstem. Neuroscience 12: 1003–1026

    PubMed  Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D 1 sites. Neuroscience 28: 263–273

    PubMed  Google Scholar 

  • Covelli V, Memo M, Spano PF, Trabuchi M (1981) Characterization of dopamine receptors in various species of invertebrates and vertebrates. Neuroscience 6: 2077–2079

    PubMed  Google Scholar 

  • Creese I, Steward K, Snyder SH (1987) Species variations in dopamine receptor binding. Eur J Pharmacol 60: 55–66

    Google Scholar 

  • Crow TJ, Deakin JFW, Johnstone EC, Longden A (1976) Dopamine and schizophrenia. Lancet 2: 565–566

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system 1: demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62 [Suppl 232]: 1–55

    Google Scholar 

  • Dawson TM, Gehlert DR, Yamamura HI, Barnett A, Wamsley JK (1985) D 1 dopamine receptors in the rat brain: autoradiographic localization using (3H)SCH 23390. Eur J Pharmacol 108: 323–325

    PubMed  Google Scholar 

  • Dawson TM, Barone P, Sidhu A, Wamsley JK, Chase TN (1986) Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: use of125I SCH 23982. Neurosci Lett 68: 216–266

    PubMed  Google Scholar 

  • DeKeyser J, DeBacker JP, Ebinger G, Vauquelin G (1985) Regional distribution of the dopamine D 2 receptors in the mesotelencephalic dopamine neuron system of human brain. J Neurol Sci 71: 119–127

    PubMed  Google Scholar 

  • Dietl MM, Palacios JM (1988) Neurotransmitter receptors in the avian brain: dopamine receptors. Brain Res 439: 354–359

    PubMed  Google Scholar 

  • Divac I, Björklund A, Lindvall O, Passingham RE (1978) Converging projections from the mediodorsal thalamic nucleus and mesencephalic dopaminergic neurons to the neocortex in three species. J Comp Neurol 180: 59–72

    PubMed  Google Scholar 

  • Dolphin A, Hamont M, Bockaert J (1979) The resolution of dopamine and beta1 and beta2-adrenergic-sensitive adenylate cyclase activities in homogenates of cat cerebellum, hippocampus and cerebral cortex. Brain Res 179: 305–317

    PubMed  Google Scholar 

  • Dubé L, Parent A (1981) The monoamine containing neurons in avian brain: a study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J Comp Neurol 196: 695–708

    PubMed  Google Scholar 

  • Dubois A, Savasta M, Curet O, Scatton B (1986) Autoradiographic distribution of the D 1 agonist (3H)SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D 2 dopamine receptors. Neuroscience 19 (1): 125–137

    PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamine (3-methoxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38: 1236–1239

    PubMed  Google Scholar 

  • Felten D, Sladek JR Jr (1982) Monoamine distribution in primate brain. Monoaminergic nuclei: anatomy, pathways, and local organization. Brain Res 9: 253–254

    Google Scholar 

  • Fuxe K (1963) Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Acta Physiol Scand 58: 383–384

    PubMed  Google Scholar 

  • Fuxe K, Ljunggern L (1965) Cellular localization of the monoamines in the upper brainstem of the pigeon. J Comp Neurol 148: 61–90

    Google Scholar 

  • Gaspar P, Berger B, Gay M, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. J Neurol Sci 58: 247–267

    PubMed  Google Scholar 

  • Govoni S, Rius RA, Battaini F, Spano PF, Trabuchi M (1986) Dopaminergic receptor regulation and protein phosphorilation during aging. In: Vezzadini P, Facchini A, Labo G (eds) Neuroendocrine system and aging. Eurage, Milano, pp 147–152

    Google Scholar 

  • Greengard P (1986) Protein phosphorylation and neuronal function. In: Costa E (ed) Fidia Research Foundation, neuroscience award lectures. Liviana Press, Padova, pp 52–100

    Google Scholar 

  • Hemmings HC Jr, Nairn AC, Aswad DW, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamineinnervated brain regions. J Neurosci 4: 99–110

    PubMed  Google Scholar 

  • Herrling PL (1981) The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists. Brain Res 212: 331–343

    PubMed  Google Scholar 

  • Hornykievicz O (1966) Dopamine (3-methoxytyramine) and brain function. Pharmacol Rev 18: 565–566

    Google Scholar 

  • Hornykievicz O (1972) Dopamine and its physiological significance in brain function. In: Bourne GH (ed) The structure and function of the nervous tissue, vol 6. Academic Press, New York, pp 367–415

    Google Scholar 

  • Hornykievicz O (1973) Dopamine in the basal ganglia, its role and therapeutic implications (including the clinical use of L-Dopa). Br Med Bull 29: 172–178

    PubMed  Google Scholar 

  • Hoyer D (1988) Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res 8: 59–81

    PubMed  Google Scholar 

  • Jastrow TR, Richfield E, Gnegy M (1984) Quantitative autoradiography of (3H)sulpiride binding sites in rat brain. Neurosci Lett 51: 47–53

    PubMed  Google Scholar 

  • Javoy-Agid F, Taquet H, Ploska A, Cherif-Zahar C, Ruberg M, Agid Y (1981) Distribution of catecholamines in the ventral mesencephalon of human brain with special reference to Parkinson's disease. J Neurochem 36: 2101–2105

    PubMed  Google Scholar 

  • Joyce JN, Sapp DW, Marshall JF (1986) Human striatal dopamine receptors are organized in compartments. Proc Natl Acad Sci 83: 8002–8006

    PubMed  Google Scholar 

  • Juorio AV, Vogt M (1967) Monoamines and their metabolites in the avian brain. J Physiol 189: 489–518

    PubMed  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 227: 93–96

    Google Scholar 

  • Kizer JS, Palkovits M, Brownstein MJ (1976) The projections of the A 8, A 9 and A 10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108: 363–370

    PubMed  Google Scholar 

  • Köhler C, Radesäter AC (1986) Autoradiographic visualization of dopamine D 2 receptors in the monkey brain using the selective benzamide drug (3H)raclopride. Neurosci Lett 66: 85–90

    PubMed  Google Scholar 

  • Lindvall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen L, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 9. Plenum Press, New York, pp 139–231

    Google Scholar 

  • Lorez HP, Burkard WP (1979) Absence of dopamine sensitive adenylate cyclase in the A 10 region, the origin of mesolimbic dopamine neurones. Experientia 35: 744–745

    PubMed  Google Scholar 

  • Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Karger, Basel

    Google Scholar 

  • Martres MP, Sales N, Bouthenet ML, Schwartz JC (1985) Localization and pharmacological characterization of D 2 dopamine receptors in rat cerebral neocortex and cerebellum using125I-Iodosulpride. Eur J Pharmacol 118: 211–219

    PubMed  Google Scholar 

  • Montagu KA (1957) Catechol compounds in rat tissues and in brains of different animals. Nature 180: 244–245

    PubMed  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–270

    PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (1981) The human central nervous system. A synopsis and atlas, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ouimet CC, Miller PE, Hemmings HC Jr, Walaas I, Greengard P (1984) DARPP-32, a dopamine and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. J Neurosci 4: 111–124

    PubMed  Google Scholar 

  • Palacios JM, Pazos A (1986) Visualization of dopamine receptors: a progress review. In: Creese I, Frazer C (eds) Structure and function of dopamine receptors. Alan R Liss, New York, pp 175–197

    Google Scholar 

  • Palacios JM, Camps M, Cortés R, Charuchinda C (1988) Characterization and distribution of brain dopamine receptors. In: Jancovic S, Tolosa E (eds) Advances in Parkinson's disease and movement disorders. Urban and Schwarzenberg, Baltimore, pp 27–36

    Google Scholar 

  • Parent A, Poitras D, Dubè L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS. Elsevier, Amsterdam, pp 409–439

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8: 3–32

    PubMed  Google Scholar 

  • Reinoso-Suarez F (1961) Topographischer Hirnatlas der Katze für experimental-physiologische Untersuchungen. E. Merck AG, Darmstadt

    Google Scholar 

  • Richfield EK, Debowey DL, Penney JB, Young AM (1987) Basal ganglia and cerebral cortical distribution of dopamine D 1 and D 2 receptors in neonatal and adult cat brains. Neurosci Lett 73: 203–208

    PubMed  Google Scholar 

  • Richfield EK, Young AB, Penney JB (1987a) Comparative distribution of dopamine D 1 and D 2 receptors in the basal ganglia of turtles, pigeons, rats, cats and monkeys. J Comp Neurol 262: 446–463

    PubMed  Google Scholar 

  • Rose JE, Woolsey CN (1949) Organization of the mammalian thalamus and its relation to the cerebral cortex. Electroencephalogr Clin Neurophysiol 1: 391–403

    Google Scholar 

  • Savasta M, Dubois A, Scatton B (1986) Autoradiographic localization of D 1 dopamine receptors in the rat brain with (3H)SCH 23390. Brain Res 375: 291–301

    PubMed  Google Scholar 

  • Scatton B, Simon H, LeMoal M, Bischoff S (1980) Origin of the dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18: 125–131

    PubMed  Google Scholar 

  • Scott TG (1965) The specificity of 5′-nucleotidase in the brain of the mouse. J Histochem Cytochem 13: 657–667

    PubMed  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  Google Scholar 

  • Sidman LR, Angevine JB Jr, Taber Pierce E(1971) Atlas of the mouse brain and spinal cord. Harvard University Press, Cambridge

    Google Scholar 

  • Stanzione P, Calabresi P, Mercuri N, Bernardi G (1984) Dopamine modulates CA 1 hippocampal neurons by elevating the threshold for spike generation: an in vitro study. Neuroscience 13: 1105–1116.

    PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9: 321–353

    PubMed  Google Scholar 

  • Tanaka C, Ishikawa M, Shimada S (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res Bull 9: 255–270

    PubMed  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 82: 367, 1–48.

    Google Scholar 

  • Yamamoto T, Kebabian JW (1987) Occurrence of the D 1 dopamine receptor in the substantia nigra of several mammalian species: identification in binding studies using (125I) SCH 23982. Brain Res 407: 398–400

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camps, M., Kelly, P.H. & Palacios, J.M. Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J. Neural Transmission 80, 105–127 (1990). https://doi.org/10.1007/BF01257077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257077

Keywords

Navigation