Skip to main content
Log in

On inverting singular kinematics and geodesic trajectory generation for robot manipulators

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a new method is proposed of solving the inverse kinematic problem for robot manipulators whose kinematics are allowed to possess singularities. The method is based upon the so-called generalized Newton algorithm, introduced by S. Smale, and can be adopted to both nonredundant and redundant kinematics. Moreover, given a pair of points in the external space of a manipulator, the method is capable of generating a minimum-length trajectory joining the points (a geodesic), in particular a straight-line trajectory. Results of representative computer experiments, including those with the PUMA 560 kinematics, are reported in order to illustrate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, K. and Angeles, J., 1989, Kinematic inversion of robotic manipulators in the presence of the redundancies,Int. J. Robotics Res. 8(6), 80–97.

    Google Scholar 

  2. Aubin, J. P. and Ekland, I., 1984,Applied Nonlinear Analysis, Wiley, New York.

    Google Scholar 

  3. Baker, D. R. and Wampler II, C. W., 1988, On the inverse kinematics of redundant manipulators,Int. J. Robotics Res. 7(2), 13–21.

    Google Scholar 

  4. Bazerghi, A., Goldenberg, A. A., and Apkarian, J., 1984, An exact model of PUMA 600 manipulator,IEEE Trans. Systems Man Cybernet. 14(3), 483–487.

    Google Scholar 

  5. Birkhoff, G. and Rota, G. C., 1989,Ordinary Differential Equations Wiley, New York.

    Google Scholar 

  6. Brockett, R. W., 1984, Robotic manipulators and the product of exponential formula in P. A. Fuhrmann (ed), Springer-Verlag, Berlin, pp. 120–129.

    Google Scholar 

  7. Chang, P. H., 1987, A closed-form solution for inverse kinematics of robot manipulators with redundancy,IEEE J. Robotics Automat. 3(5), 393–403.

    Google Scholar 

  8. Denavit, J. and Hartenberg, R. S., 1955, A kinematic notation for lower pair mechanisms based on matrices.J. Appl. Mech. Trans. ASME, 215–221.

  9. Goldenberg, A. A., Benhabib, B., and Fenton, R. G., 1985, A complete generalized solution to the inverse kinematics of robots,IEEE J. Robotics Automat. 1(1), 14–20.

    Google Scholar 

  10. Golubitsky, M. and Guillemin, V., 1973,Stable Mappings and Their Singularities, Springer-Verlag, Berlin.

    Google Scholar 

  11. Gorla, B. and Renaud, M., 1984,Modeles des robots manipulateurs, Cepadeus Editions, Toulouse.

    Google Scholar 

  12. Gottlieb, D. H., 1986, Robots and fibre bundles,Bull. Soc. Math. Belgique,38, 219–223.

    Google Scholar 

  13. Hirsch, M. W. and Smale, S., 1979, On algorithms for solvingf(x) = 0,Comm. Pure Appl. Math. 32, 281–312.

    Google Scholar 

  14. Horn, R. A. and Johnson, C. R., 1986,Matrix Analysis, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  15. Klein, C. and Huang, C., 1983, Review of pseudoinverse control for use with kinematically redundant manipulators,IEEE Trans. Systems Man Cybernet. 13(2), 245–250.

    Google Scholar 

  16. Loncaric, J., 1985, Geometrical analysis of compliant mechanism in robotics, Thesis, Harvard University.

  17. Łojasiewicz, S., 1965,Ensembles semi-analytiques, Publ. IHES, Bures-sur-Yvette.

    Google Scholar 

  18. Maciejewski, A. and Klein, C., 1989, The singular value decomposition: computation and applications to robotics,Int. J. Robotics Res. 8(6), 63–79.

    Google Scholar 

  19. Nakamura, Y., 1991,Advanced Robotics: Redundancy and Optimization, Addison-Wesley, Reading, Mass.

    Google Scholar 

  20. Nakamura, Y. and Hanafusa, H., 1986, Inverse kinematic solutions with singularity robustness for robot manipulators control,ASME J. Dyn. Meas. Control. 108(3), 163–171.

    Google Scholar 

  21. Parenti-Castelli, V., Innocenti, C., 1988, A numerical procedure for the determination and control of all configurations of a manipulator, in P. Kopacek, I. Troch and K. Desoler (eds),Theory of Robots Pergamon Press, Oxford, pp. 57–62.

    Google Scholar 

  22. Paul, R. P., 1981,Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge.

    Google Scholar 

  23. Sampei, M. and Furuta, K., 1988, Robot control in the neighbourhood of singular points,IEEE J. Robotics Automat. 4(13), 303–309.

    Google Scholar 

  24. Sciavicco, L. and Siciliano, B., 1988, The augmented task space approach for redundant manipulator control, in U. Rembold (ed)Robot Control 1988, preprints of the IFAC Symp., Karlsruhe, pp. 44.1–44.5.

    Google Scholar 

  25. Shamir, T., 1990, The singularities of redundant robot arms,Int. J. Robotics Res. 9(1), 113–121.

    Google Scholar 

  26. Smale, S., 1976, A convergent process of price adjustment and global Newton method,J. Math. Economics 3, 107–120.

    Google Scholar 

  27. Spong, M. W. and Vidyasagar, M., 1989,Robot Dynamics and Control, Wiley, New York.

    Google Scholar 

  28. Tarn, T. J.et al., Dynamic equations for six-link PUMA 560 robot arm,Robotics Laboratory Report SSM-RL-86-05, Department of Systems Science and Mathematics, Washington University, 1986.

  29. Taylor, R. H., 1983, Planning and execution of straight line manipulator trajectories, in M. Bradyet al. (eds).,Robot Motion: Planning and Control, MIT Press, Cambridge, pp. 265–286.

    Google Scholar 

  30. Tchoń, K., 1991, Differential topology of the inverse kinematic problem for redundant robot manipulators,Int. J. Robotics Res. 10(5), 492–504.

    Google Scholar 

  31. Tchoń, K. and Dulęba, I., 1991, Definition of a kinematic metric for robot manipulators,J. Robotic System., to be published.

  32. Tchoń, K. and Urban, P., 1992, Classification of kinematic singularities in planar robot manipulators,Systems & Control Lett. 19, 293–302.

    Google Scholar 

  33. Wampler, C. W., 1986, Manipulator inverse kinematic solutions based on damped least-squares solutions,IEEE Trans. Systems Man Cybernet. 16(1), 93–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchoń, K., Dulęba, I. On inverting singular kinematics and geodesic trajectory generation for robot manipulators. J Intell Robot Syst 8, 325–359 (1993). https://doi.org/10.1007/BF01257948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257948

Key words

Navigation