Skip to main content
Log in

Nodal sensitivities as error estimates in computational mechanics

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper proposes the use of special sensitivities, called nodal sensitivities, as error indicators and estimators for numerical analysis in mechanics. Nodal sensitivities are defined as rates of change of response quantities with respect to nodal positions. Direct analytical differentiation is used to obtain the sensitivities, and the infinitesimal perturbations of the nodes are forced to lie along the elements. The idea proposed here can be used in conjunction with general purpose computational methods such as the Finite Element Method (FEM), the Boundary Element Method (BEM) or the Finite Difference Method (FDM); however, the BEM is the method of choice in this paper. The performance of the error indicators is evaluated through two numerical examples in linear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tworzydlo, W. W., Oden, J. T.: Towards an automated environment in computational mechanics. Comput. Methods Appl. Mech. Eng.104, 87–143 (1993).

    Google Scholar 

  2. Finnigan, P. M., Kela, A., Davis, J. E.: Geometry as a basis for finite element automation. Eng. Comput.5, 147–160 (1989).

    Google Scholar 

  3. Shephard, M. S., Finnigan, P. M.: Integration of geometric modeling and advanced finite element preprocessing. Finite Elem. Anal. Des.4, 147–162 (1988).

    Google Scholar 

  4. Paulino, G. H.: Novel formulations of the boundary element method for fracture mechanics and error estimation. Ph.D. dissertation, Cornell University, Ithaca, New York, U.S.A., 1995.

    Google Scholar 

  5. Kelly, D. W., Mills, R. J., Reizes, J. A., Miller, A. D.: A posteriori estimates of the solution error caused by discretization in the finite element, finite difference and boundary element methods. Int. J. Numer. Methods Eng.24, 1921–1939 (1987).

    Google Scholar 

  6. Mitra, A. K., Salazar, L. R., Sawyer, M. L.: Spline assisted grid optimization scheme for the boundary element method. In: Boundary element XV, Vol. 1 (Brebbia, C. A., Rencis, J. J., eds.), pp. 643–656. Southampton and London: Computational Mechanics Publications and Elsevier Applied Science 1993.

    Google Scholar 

  7. Lean, M. H.: Adaptively meshed boundary integral equation method for nonlinear magnetostatics. IEEE Trans. Magnetics26, 614–617 (1990).

    Google Scholar 

  8. Paulino, G. H., Gray, L. J., Zarikian, V.: Hypersingular residuals — A new approach for error estimation in the boundary element method. Int. J. Numer. Methods Eng.39, 2005–2029 (1996).

    Google Scholar 

  9. Bugeda, G., Oliver, J.: A general methodology for structural shape optimazition problems using automatic adaptive remeshing. Int. J. Numer. Methods Eng.36, 3161–3185 (1993).

    Google Scholar 

  10. Zienkiewicz, O. C., Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng.24, 337–357 (1987).

    Google Scholar 

  11. Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng.33, 1331–1364 (1992).

    Google Scholar 

  12. Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng.33, 1365–1382 (1992).

    Google Scholar 

  13. Sussman, T., Bathe, K.-J.: The gradient of the finite element variational indicator with respect to nodal point coordinates: an explicit calculation and application in fracture mechanics and mesh optimization. Int. J. Numer. Methods Eng.21, 763–774 (1985).

    Google Scholar 

  14. Guiggiani, M.: Error indicators for adaptive mesh refinement in the boundary element method — a new approach. Int. J. Numer. Methods Eng.29, 1247–1269 (1990).

    Google Scholar 

  15. Guiggiani, M., Lombardi, F.: Self-adaptive boundary elements withh-hierarchical shape functions. Adv. Eng. Software15, 269–277 (1992).

    Google Scholar 

  16. Henneberger, G., Meunier, G., Sabonnadière, J. C., Sattler, Ph. K., Shen, D.: Sensitivity analysis of the nodal position in the adaptive refinement of finite element meshes. IEEE Trans. Magnetics26, 787–790 (1990).

    Google Scholar 

  17. Haftka, R. T., Gürdal, Z.: Elements of structural optimization, 3rd ed. Dordrecht: Kluwer 1992.

    Google Scholar 

  18. Shi, F., Ramesh, P., Mukherjee, S.: Adaptive mesh refinement of the boundary element method for potential problems by using mesh sensitivities as error indicators. Comput. Mech.16, 379–395 (1995).

    Google Scholar 

  19. Rizzo, F. J.: An integral equation approach to boundary value problems of classical elastostatics. Q. Appl. Math.25, 83–95 (1967).

    Google Scholar 

  20. Guiggiani, M.: The evaluation of Cauchy principal value integrals in the boundary element method — A review. Math. Comput. Model.15, 175–184 (1991).

    Google Scholar 

  21. Lutz, E. D., Gray, L. J.: Exact evaluation of singular boundary integrals without CPV. Commun. Numer. Methods Eng.9, 909–915 (1993).

    Google Scholar 

  22. Ghosh, N., Rajiyah, H., Ghosh, S., Mukherjee, S.: A new boundary element method formulation for linear elasticity. J. Appl. Mech. Trans. ASME53, 69–76 (1986).

    Google Scholar 

  23. Ghosh, N., Mukherjee, S.: A new boundary element method formulation for three-dimensional problems in linear elasticity. Acta Mech.67, 107–119 (1987).

    Google Scholar 

  24. Zhang, Q., Mukherjee, S.: Design sensitivity coefficients for linear elastic bodies with zones and corners by the derivative boundary element. Int. J. Solids Struct.27, 983–998 (1991).

    Google Scholar 

  25. Nagarajan, A., Lutz, E., Mukherjee, S.: A novel boundary element for linear elasticity with no numerical integration for two-dimensional and line integrals for three-dimensional problems. J. Appl. Mech. Trans. ASME61, 264–269 (1994).

    Google Scholar 

  26. Nagarajan, A., Mukherjee, S., Lutz, E.: The boundary contour method for three-dimensional linear elasticity. J. Appl. Mech. Trans. ASME63, 278–286 (1996).

    Google Scholar 

  27. Sirtori, S., Maier, G., Novati, G., Miccoli, S.: A Galerkin symmetric boundary-element method in elasticity: formulation and implementation. Int. J. Numer. Methods Eng.35, 255–282 (1992).

    Google Scholar 

  28. Oden, J. T., Demkowicz, L.: Advances in adaptive improvements — A survey of adaptive finite element methods in computational mechanics. In: State-of-the-art surveys on computational mechanics (Noor, A. K., Oden, J. T., eds.), pp. 441–467. New York: ASME 1989.

    Google Scholar 

  29. Diaz, A. R., Kikuchi, N., Taylor, J. E.: A method of grid optimization for finite element methods. Comput. Methods Appl. Mech. Eng.41, 29–45 (1983).

    Google Scholar 

  30. Ingber, M. S., Mitra, A. K.: Grid optimization for the boundary element method. Int. J. Numer. Methods Eng.23, 2121–2136 (1986).

    Google Scholar 

  31. Barone, M. R., Yang, R.-J.: Boundary integral equations for recovery of design sensitivities in shape optimization. AIAA J.26, 589–594 (1988).

    Google Scholar 

  32. Zhang, Q., Mukherjee, S., Chandra, A.: Shape design sensitivity analysis for geometrically and materially nonlinear problems by the boundary element method. Int. J. Solids Struct.29, 2503–2525 (1992).

    Google Scholar 

  33. Böhm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods in CAGD. Comput. Aided Geom. Des.1, 1–60 (1984).

    Google Scholar 

  34. Brebbia, C. A., Telles, J. C. F., Wrobel, L. C.: Boundary element techniques. Berlin, Heidelberg, New York: Springer 1984.

    Google Scholar 

  35. Golub, G. H., Van Loan, C. F.: Matrix computations, 2nd ed. Baltimore, London: The Johns Hopkins University Press 1989.

    Google Scholar 

  36. Cook, R. D., Young, W. C.: Advanced mechanics of materials. New York: Macmillan 1985.

    Google Scholar 

  37. Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity, 4th ed. Groningen — The Netherlands: P. Noordhoff, 1963.

    Google Scholar 

  38. Sirtori, S., Miccoli, S., Korach, E.: Symmetric coupling of finite elements and boundary elements. In: Advances in boundary element techniques (Kane, J. H., Maier, G., Tosaka, N., Atluri, S. N., eds.), pp. 407–427. Berlin, Heidelberg, New York, Tokyo: Springer 1993.

    Google Scholar 

  39. Haug, E. J., Choi, K. K., Komkov, V.: Design sensitivity analysis of structural systems. Orlando: Academic Press 1986.

    Google Scholar 

  40. Arora, J. S., Cardoso, J. B.: Variational principle for shape design sensitivity analysis. AIAA J.30, 538–547 (1992).

    Google Scholar 

  41. Lin, S.-C., Abel, J. F.: Variational approach for a new direct-integration form of the virtual crack extension method. Int. J. Fract.38, 217–235 (1988).

    Google Scholar 

  42. Bonnet, M., Bui, H. D.: Regularization of the displacement and traction bie for 3d elastodynamics using indirect methods. In: Advances in boundary element techniques (Kane, J. H., Maier, G., Tosaka, N., Atluri, S. N., eds.), pp. 1–29. Berlin, Heidelberg, New York, Tokyo: Springer 1993.

    Google Scholar 

  43. Sokolnikoff, I. S.: Tensor analysis theory and applications to geometry and mechanics of continua. New York: Wiley 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulino, G.H., Shi, F., Mukherjee, S. et al. Nodal sensitivities as error estimates in computational mechanics. Acta Mechanica 121, 191–213 (1997). https://doi.org/10.1007/BF01262532

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262532

Keywords

Navigation