Skip to main content
Log in

The GABA B -receptor antagonist, CGP 35348, antagonises γ-hydroxybutyrate- and baclofen-induced alterations in locomotor activity and forebrain dopamine levels in mice

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Previous studies have shown that administration of γ-hydroxybutyric acid (GHBA) or baclofen is associated with a decrease in locomotor activity as well as an increase of dopamine (DA) in brain. In the present study we analyse whether these actions are related to activation of GABA B -receptors utilising a GABA B -receptor antagonist, CGP 35348. Administration of GHBA (200 or 800 mg/kg, i.p.) or baclofen (4 or 16 mg/kg, i.p.) induced a marked and dose-dependent decrease in locomotor activity in mice, that was antagonised by pretreatment with CGP 35348 (400 mg/kg, i.p.). Treatment with the highest doses of GHBA and baclofen produced clear-cut increases in forebrain DA concentration. Also these effects were effectively antagonised by pretreatment with CGP 35348. Treatment with the GABA B -receptor antagonist alone did not influence the locomotor activity or brain DA concentration. These results indicate that the behaviourally depressive and DA increasing effects of GHBA and baclofen are mediated by activation of GABA B -receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CGP 35348 :

[3-aminopropyl(diethoxymethyl)phosphinic acid]

GABA :

γ-aminobutyric acid

GHBA :

γ-hydroxybutyric acid

GBL :

γ-butyrolactone

DA :

dopamine

References

  • Andén N-E, Wachtel H (1977) Biochemical effects of baclofen (β-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain. Acta Pharmacol Toxicol 40: 310–320

    Google Scholar 

  • Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360–375

    PubMed  Google Scholar 

  • Banarjee PK, Snead OC (1995) Presynaptic gamma-hydroxybutyric acid (GHBA) and gamma-aminobutyric acidB (GABA B ) receptor mediated release of GABA and glutamate (Glu) in rat thalamic ventrobasal nucleus (VB): a possible mechanism for the generation of absence-like seizures induced by GHB. J Pharmacol Exp Ther 273: 1534–1543

    PubMed  Google Scholar 

  • Benavides J, Rumigny JF, Bourguignon JJ, Cash C, Wermuth C, Mandel P, Vincendon G, Maitre M (1982) High affinity binding sites for γ-hydroxybutyric acid in rat brain. Life Sci 30: 953–961

    PubMed  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6: 173–196

    Google Scholar 

  • Bernasconi R, Lauber J, Marescaux C, Vergnes M, Martin P, Rubio V, Leonhardt T, Reymann N, Bittiger H (1992) Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABA B receptors. J Neural Transm [Suppl] 35: 155–177

    Google Scholar 

  • Bessman SP, Fishbein WN (1963) Gamma-hydroxybutyrate, a normal brain metabolite. Nature: 1207–1208

  • Biggio G, Cibin M, Diana M, Fadda F, Ferrara SD, Gallimberti L, Gessa GL, Mereu GP, Rossetti ZL, Serra M (1992) Suppression of voluntary alcohol intake in rats and alcoholics by gamma-hydroxybutyric acid: a non-GABAergic mechanism. In: Biggio G, Concas A, Costa E (eds) GABAergic synaptic transmission. Raven Press, New York, pp 281–288

    Google Scholar 

  • Bloom FE, Schulman JA, Koob GF (1989) Catecholamines and behavior. In: Trendelenburg U, Weiner N (eds) Handbook of experimental pharmacology, vol 90/II. Catecholamines II. Springer, Berlin Heidelberg New York Tokyo, pp 27–88

    Google Scholar 

  • Bonanno G, Raiteri M (1993) γ-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABA B receptor. J Pharmacol Exp Ther 265: 765–770

    PubMed  Google Scholar 

  • Bowery NG (1993) GABA B receptor pharmacology. Ann Rev Pharmacol Toxicol 33: 109–147

    Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 1: 179–186

    PubMed  Google Scholar 

  • Colombo G, Agabio R, Lobina C, Reali R, Fadda F, Gessa GL (1995a) Cross-tolerance to ethanol and γ-hydroxybutyric acid. Eur J Pharmacol 273: 235–238

    PubMed  Google Scholar 

  • Colombo G, Agabio R, Balaklievskaia N, Diaz G, Lobina C, Reali R, Gessa GL (1995b) Oral self-administration of γ-hydroxybutyric acid in the rat. Eur J Pharmacol 285: 103–107

    PubMed  Google Scholar 

  • Deutsch SI, Mastropaolo J, Schwartz BL, Rosse RB, Morihisa JM (1989) A “glutamatergic hypothesis” of schizophrenia. Rationale for pharmacotherapy with glycine. Clin Neuropharmacol 12: 1–13

    PubMed  Google Scholar 

  • Diana M, Pistis M, Muntoni A, Gessa G (1991) Heterogenous responses of substantia nigra pars reticulata neurons to γ-hydroxybutyric acid administration. Eur J Pharmacol 230: 363–365

    Google Scholar 

  • Engberg G, Nissbrandt H (1993) γ-Hydroxybutyric acid (GHBA) induces pacemaker activity and inhibition of substantia nigra dopamine neurons by activating GABA B -receptors. Naunyn Schmiedebergs Arch Pharmacol 348: 491–497

    PubMed  Google Scholar 

  • Engberg G, Kling Petersen T, Nissbrandt H (1993) GABA B -receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra. Synapse 15: 229–238

    PubMed  Google Scholar 

  • Felice LJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 31: 1461–1465

    PubMed  Google Scholar 

  • Food and Drug Administration (1991) Warning about GHBA. J Am Med Assoc 265: 1802

    Google Scholar 

  • Gessa GL, Vargiu L, Crabai F, Boero GC, Caboni F, Camba R (1966) Selective increase of brain dopamine induced by gamma-hydroxybutyrate. Life Sci 5: 1921–1930

    Google Scholar 

  • Gessa GL, Crabai F, Vargiu L, Spano PF (1968) Selective increase of brain dopamine induced by γ-hydroxybutyrate: study of the mechanism of action. J Neurochem 15: 377–381

    PubMed  Google Scholar 

  • Gianutsos G, Moore KE (1978) Tolerence to the effects of baclofen and γ-butyrolactone on locomotor activity and dopaminergic neurons in the mouse. J Pharmacol Exp Ther 207: 859–869

    PubMed  Google Scholar 

  • Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4: 966–977

    PubMed  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382

    PubMed  Google Scholar 

  • Maitre M, Rumigny JF, Cash CD, Mandel P (1983) Subcellular distribution of γ-hydroxybutyrate binding sites in rat brain. Principal localization in the synaptosomal fraction. Biochem Biophys Res Commun 110: 262–265

    PubMed  Google Scholar 

  • Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABA B receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46: 423–462

    PubMed  Google Scholar 

  • Olpe H-R, Karlsson G, Pozza MF, Brugger F, Steinmann M, Van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABA B -receptors. Eur J Pharmacol 187: 27–38

    PubMed  Google Scholar 

  • Roth RH, Giarman NJ (1970) Natural occurrence of gamma-hydroxybutyric acid in mammalian brain. Biochem Pharmacol 21: 2111–2121

    Google Scholar 

  • Roth RH, Walters JR, Aghajanian GK (1973) Effect of impulse flow on the release and synthesis of dopamine in the rat striatum. In: Snyder SH, Usdin E (eds) Frontiers in catecholamine research. Pergamon Press, New York, pp 567–574

    Google Scholar 

  • Santiago M, Westerink BHC (1991) Characterization and pharmacological responsiveness of dopamine release recorded by microdialysis in the substantia nigra of conscious rats. J Neurochem 57: 738–747

    PubMed  Google Scholar 

  • Serra M, Sanna E, Foddi C, Concas A, Giggio G (1991) Failure of γ-hydroxybutyrate to alter the function of the GABA A receptor complex in the rat cerebral cortex. Psychopharmacol 104: 351–355

    Google Scholar 

  • Snead OC (1977) Minireview: gamma-hydroxybutyrate. Life Sci 20: 1935–1943

    PubMed  Google Scholar 

  • Snead OC, Liu CC (1993) GABA A receptor function in the γ-hydroxybutyrate model of generalized absence seizures. Neuropharmacol 32: 401–409

    Google Scholar 

  • Stock G, Magnusson T, Andén N-E (1973) Increase in brain dopamine after axotomy or treatment with gammahydroxybutyric acid due to elimination of the nerve impulse flow. Naunyn Schmiedebergs Arch Pharmacol 278: 347–361

    Google Scholar 

  • Tunnicliff G (1992) Significance of γ-hydroxybutyric acid in the brain. Gen Pharmacol 23: 1027–1034

    PubMed  Google Scholar 

  • Vayer P, Mandel P, Maitre M (1987) Gamma-hydroxybutyrate, a possible neurotransmitter. Life Sci 41: 1547–1557

    PubMed  Google Scholar 

  • Wachtel H, Andén, N-E (1978) Motor activity of rats following intracerebral injections of drugs influencing GABA mechanisms. Naunyn Schmiedebergs Arch Pharmacol 302: 133–139

    PubMed  Google Scholar 

  • Waldmeier PC (1991) The GABA B -antagonist, CGP 35348, antagonises the effects of baclofen, γ-butyrolactone and HA 966 on rat striatal dopamine synthesis. Naunyn Schmiedebergs Arch Pharmacol 343: 173–178

    PubMed  Google Scholar 

  • Walters JR, Roth RH (1972) Effect of gamma-hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum. Biochem Pharmacol 21: 2111–2121

    PubMed  Google Scholar 

  • Xie X, Smart TG (1992a) γ-Hydroxybutyrate hyperpolarizes hippocampal neurones by activating GABA B receptors. Eur J Pharmacol 212: 291–294

    PubMed  Google Scholar 

  • Xie X, Smart TG (1992b) γ-Hydroxybutyrate depresses monosynaptic excitatory and inhibitory postsynaptic potentials in rat hippocampal slices. Eur J Pharmacol 223: 193–196

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissbrandt, H., Engberg, G. The GABA B -receptor antagonist, CGP 35348, antagonises γ-hydroxybutyrate- and baclofen-induced alterations in locomotor activity and forebrain dopamine levels in mice. J. Neural Transmission 103, 1255–1263 (1996). https://doi.org/10.1007/BF01271186

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01271186

Keywords

Navigation