Skip to main content
Log in

Chromomere analysis of the chromosome complement of rye

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

The seven chromosome pairs of the normal chromosome complement ofSecale céréale (A chromosomes) have been identified at pachytene. A detailed chromomere analysis of the A chromosomes and the “standard fragment” (a type of B chromosome previously described) including the number, size, and sequence of the chromomeres, permitted the construction of eight reference maps of these chromosomes.

  1. (1)

    There is a good agreement between the chromomere number and chromosome length of the different A chromosomes and the standard fragment.

  2. (2)

    Knob formations are seriations of large chromomeres and deeply stained fibrillae. The 11 knob formations of the A chromosomes plus the one of the standard fragment are all accompanied on one or both sides by seriations of particularly small chromomeres. The organization of the kinetochoric structure is of the same type in all the seven A chromosomes and the standard fragment.

  3. (3)

    Small conspicuous seriations composed generally of two consecutive pairs of larger chromomeres having between them a fibrilla pair particularly weakly stained are found at regular intervals in the chromosome arms. This results in a regional differentiation of the chromosome.

  4. (4)

    The length of the thick regions adjacent to the kinetochores is apparently not correlated with arm length. When the length of the arm varies it is mostly the median regions — with medium size chromomeres — that vary in length.

  5. (5)

    Chromomere pairs having chromomeres of unequal size or having one of the chromomere partners absent are found in all chromosomes. This evidence of the structural heterozygosity of the chromosome material of rye is in agreement with the cross-fertilizing breeding system of the species.

  6. (6)

    A structural rearrangement involving from one to seven chromomere pairs is present in chromosome VI. The number of chromomeres involved in this rearrangement varies from cell to cell, the rearrangement being absent in some P.M.C.'s.

  7. (7)

    Not all chromomeres have the usual round shape but some possess a hairy structure. Hairy chromomeres appear with a much greater frequency in the positively heteropycnotic regions of the chromosome where chromomeres are large than in the other regions of the chromosome where the chromomeres are of medium size or small.

  8. (8)

    It could be ascertained that the standard fragment of rye — like that in maize — is evolved to such an extent that there is no segment of the A chromosomes that can be directly homologized with it. B chromosomes may have arisen from A chromosomes through a hereditary variation in the properties of the kinetochore of an A chromosome, or their process of origin may have been accompanied by such a hereditary variation.

  9. (9)

    The standard fragment is not an exception to the general rule of the heterochromatic constitution of the B's since it also shows a certain degree of heteropycnosis when compared with the A chromosomes at pachytene. Both the number and extension of positively and negatively heteropycnotic regions is bigger in the standard fragment than in the A chromosomes.

  10. (10)

    The average distance in micra between the centres of two consecutive chromomeres decreases with increasing size of the chromomeres. At the same time the distance between the centres of large chromomeres is approximately of the same length as their diameter.

  11. (11)

    All A chromosomes possess the same general chromomeric pattern with minor variants. In all A chromosomes the chromomeres are particularly large on both sides of the kinetochore. There is a subsequent general decrease in chromomere size on both sides of the kinetochore towards the chromosome ends, where an abrupt increase in chromomere size takes place in most cases (knob formations). This gradient of chromomere size originates on both sides of the kinetochore where chromomeres of large size are found and finishes in chromomeres of very small size at the chromosome ends or just behind the knob formations when these are present. The regulation of the rate at which this decrease in chromomere size takes place is apparently controlled in the first place by the knob formations and, in their absence, by the arm length. The existence of this gradient and the variation of its shape in relation to knob formation position and arm length indicate that the size of a chromomere is not only determined by its genetical constitution and nuclear environment but is also dependent on its position within the chromosome.

  12. (12)

    Chromosomes III and VI are rather similar to chromosomes IV and VII respectively. The existence of a chromomere size gradient in the arms of the A chromosomes of rye furnishes the basis for an interpretation that conciliates at the same time the apparent genetical differentiation of these chromosomes with their morphological similarity.

  13. (13)

    In rye pachytene chromosomes there is no essential difference, at the mircoscopic level, between the structural organization of euchromatic and heterochromatic regions. Heteropycnosis appears as a phenomenon determined not only by the genetic constitution and nuclear environment of a certain chromosome region but also by the position of this same chromosome region within the chromosome body.

  14. (14)

    The structural comparative analysis of on one hand, the part of the chromosome arms not including the knob formations, and on the other hand kinetochores and knob formations, reveals that in rye pachytene chromosomes there is no essential morphological difference, at the microscopic level, between the components of the kinetochores, those of knob formations, and those of the remaining part of the chromosome arms, all these three chromosome regions being composed of chromomeres and fibrillae which are morphologically identical. This analysis also furnishes a series of data that permit an understanding of the apparently deviating morphological appearance of kinetochores and knob formations. The pachytene chromosome appears, at the microscopic level, as a structural unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Belling, J.: The ultimate chromomeres ofLilium andAloë, with regard to the numbers of genes. Univ. California Publ. Bot.14, 307–318 (1928a).

    Google Scholar 

  • —: Contraction of chromosomes during maturation divisions inLilium and other plants. Univ. California Publ. Bot.14, 335–343 (1928b).

    Google Scholar 

  • Bosemark, N. O.: Accessory chromosomes inFestuca pratensis Huds. Hereditas36, 366–368 (1950).

    Google Scholar 

  • Bridges, C. B.: Salivary chromosome maps. With a key to the banding of the chromosomes ofDrosophila melanogaster. J. Hered.26, 60–64 (1935).

    Google Scholar 

  • Camara, A.: Efeitos do calor sobre a microsporogénese doSecale cereale. Sci. Genet.1, 86–102 (1939).

    Google Scholar 

  • Darlington, C. D.: The origin and behaviour of chiasmata, VIII.Secale cereale (n, 8). Cytologia4, 444–452 (1933a).

    Google Scholar 

  • —: Meiosis inAgapanthus andKniphofia. Cytologia4, 229–240 (1933b).

    Google Scholar 

  • - Selection and transmission of B-chromosomes. John Innes Hort. Inst. Fortieth Ann. Rep. 1949, S. 17–18. 1950.

  • - Mendel and the determinants, S. 315–332. In Genetics in the 20th century, edited byL. C. Dunn. New York 1951.

  • Darlington, C. D., andP. T. Thomas: Morbid mitosis and the activity of inert chromosomes inSorghum. Proc. Roy. Soc. Lond., Ser. B No 859130, 127–150 (1941).

    Google Scholar 

  • Fernandes, A.: Sur le comportement d'un chromosome surnuméraire pendant la mitose. Sci. Genet.1, 141–167 (1939).

    Google Scholar 

  • —: Sur l'origine des chromosomes surnuméraires hétérochromatiques chezNarcissus Bulbocodium L. Bol. Soc. Brot.17 (2a), 251–256 (1943).

    Google Scholar 

  • —: Sur le comportement des chromosomes surnuméraires hétérochromatiques pendant la meiose. I. Chromosomes longs hétérobrachiaux. Bol. Soc. Brot.20 (2a), 93–154 (1946).

    Google Scholar 

  • Geitler, L.: Das Verhalten der Chromozentren vonAgapanthus während der Meiose. Österr. bot. Z.82, 277–282 (1933).

    Google Scholar 

  • Håkansson, A.: Überzählige Chromosomen in einer Rasse vonGodetia nutans Hiorth. Bot. Not.1945, 1–19.

  • Heribert-Nilsson, N.: Rågförädlingine metodik och principer. Nord. Jordbrugsf.1919, 4–9.

  • —: Eine Prüfung der Wege und Theorien der Inzucht. Hereditas23, 236–256 (1937).

    Google Scholar 

  • Huskins, C. L., andS. G. Smith: Meiotic chromosome structure inTrillium erectum L. Ann. of Bot.49, 119–150 (1935).

    Google Scholar 

  • Kattermann, G.: Die Chromosomenverhältnisse bei Weizen-Roggenbastarden der zweiten Generation mit besonderer Berücksichtigung der Homologiebeziehungen. Z. Abstammgslehre70, 265–308 (1936).

    Google Scholar 

  • —: Das Verhalten des Chromosoms für Behaarung roggenbehaarter Nachkommen aus Weizen-Roggenbastardierung in neuen Kreuzungen mit Roggen und Weizen. Z. Abstammgslehre74, 1–16 (1937). Ein neuer Karyotyp bei Roggen. Chromosoma1, 284–299 (1939).

    Google Scholar 

  • Kaufmann, B. P.: Chromosome structure in relation to the chromosome cycle. II. Bot. Review14, 57–126 (1948).

    Google Scholar 

  • Kostoff, D.: Chromosome behavior inTriticum hybrids and allied genera. II.Tr. Timopheevi (n=14) ×Secale cereale (n=7). Z. Zücht., Reihe A21, 378–379 (1937a).

    Google Scholar 

  • —: Studies on polyploid plants. XIV. The behaviour ofHaynaldia genom in the trigeneric triple hybrid (Triticum, dicoccum × Haynaldiavillosa) ×Secale cereale. Bull. Inst. Genetics USSR11, 10–11 (1937b).

    Google Scholar 

  • —: Interspecific hybrids inSecale (rye). I. C. R. [Doklady] Acad. Sci. URSS14, 213–214 (1937c).

    Google Scholar 

  • Lamm, R.: Cytological studies on inbred rye. Hereditas22, 217–240 (1936).

    Google Scholar 

  • Levan, A.: Studies on the meiotic mechanism of haploid rye. Hereditas28, 177–211 (1942).

    Google Scholar 

  • Lewitsky, G. A.: The morphology of chromosomes. Bull. Appl. Bot., Genetics a. Plant Breeding27, 19–174 (1931).

    Google Scholar 

  • Lima-de-Faria, A.: B chromosomes of rye at pachytene. Portug. Acta Biol. A2, 167–174 (1948).

    Google Scholar 

  • —: The structure of the centromere of the chromosomes of rye. Hereditas35, 77–85 (1949a).

    Google Scholar 

  • —: Genetics, origin and evolution of kinetochores. Hereditas35, 422–444 (1949b).

    Google Scholar 

  • —: The Feulgen test applied to centromeric chromomeres. Hereditas36, 60–74 (1950a).

    Google Scholar 

  • —: Meiosis and pollen mitosis in rye under controlled conditions. Hereditas36, 106–109 (1950b).

    Google Scholar 

  • - The chromosomes ofSecale cereale at pachytene. Proc. Seventh Int. Bot. Congr.1950 c.

  • Ljung, E. W.: The rye breeding work of the Seed Association. “Svalöf 1886–1946” (Lund)1948, 127–134.

  • Longley, A. E.: Knob positions on corn chromosomes. J. Agricult. Res.59, 475–490 (1939).

    Google Scholar 

  • Lundqvist, A.: On self-sterility and inbreeding effect in tetraploid rye. Hereditas33, 570–571 (1947).

    Google Scholar 

  • Mather, K.: Statistical Analysis in Biology. London, 1946. 267 p.

  • Mather, K., andR. Lamm: The negative correlation of chiasma frequencies. Hereditas20, 65–70 (1935).

    Google Scholar 

  • McClintock, B.: A method for making aceto-carmine smears permanent. Stain Technol.4, 53–56 (1929).

    Google Scholar 

  • —: The association of non-homologous parts of chromosomes in the mid-prophase of meiosis inZea mays. Z. Zellforschg.19, 191–237 (1933).

    Google Scholar 

  • —: The relation of a particular chromosomal element to the development of the nucleoli inZea mays. Z. Zellforschg.21, 294–328 (1934).

    Google Scholar 

  • Melander, Y.: Accessory chromosomes in animals, especially inPolycelis tenuis. Hereditas36, 19–38 (1950).

    Google Scholar 

  • Metz, C. W.: Observations on the nature and significance of minute chromosomal differences in species hybrids and in ordinary wild strains ofSciara. Genetics24, 105 (1939).

    Google Scholar 

  • - Species hybrids, evolutionary chromosome changes, and the mechanism of chromosome rearrangement inSciara. Proc. VII. Internat. Genet. Congr. Edinburgh 1941, S. 215–218.

  • Morgan jr.,D. T.: The formation of chromocentres in interkinetic nuclei of maize. J. Hered.34, 194–198 (1943).

    Google Scholar 

  • Müntzing, A.: Apomictic and sexual seed formation inPoa. Hereditas17, 131–154 (1933).

    Google Scholar 

  • —: Chromosomenaberrationen bei Pflanzen und ihre genetische Wirkung. Z. Abstammgslehre76, 323–350 (1939).

    Google Scholar 

  • —: Genetical effects of duplicated fragment chromosomes in rye. Hereditas29, 91–112 (1943a).

    Google Scholar 

  • —: Double crosses of inbred rye. Bot. Not.1943, 333–345 (1943b).

    Google Scholar 

  • —: Cytological studies of extra fragment chromosomes in rye. I. Iso-fragments produced by misdivision. Hereditas30, 231–248 (1944).

    Google Scholar 

  • —: Experiences from work with induced polyploidy in cereals. “Svalöf 1886–1946” (Lund)1948, 324–337 (1948a).

    Google Scholar 

  • —: Accessory chromosomes inPoa alpina. Heredity2, 49–61 (1948 b).

    Google Scholar 

  • - Accessory chromosomes inSecale andPoa. Proc. Eighth Internat. Congr. of Gen. Hereditas Suppl.1949, 402–411.

  • —: Accessory chromosomes in rye populations from Turkey and Afghanistan. Hereditas36, 507–509 (1950).

    Google Scholar 

  • —: Cyto-genetic properties and practical value of tetraploid rye. Hereditas37, 17–84 (1951).

    Google Scholar 

  • Müntzing, A., andA. Lima-de-Faria: Pachytene analysis of standard fragments and large iso-fragments in rye. Hereditas35, 253–268 (1949).

    Google Scholar 

  • Müntzing, A., andR. Prakken: Chromosomal aberrations in rye populations. Hereditas27, 273–308 (1941).

    Google Scholar 

  • Nebel, B. R.: Chromosome structure. Bot. Review5, 563–626 (1939).

    Google Scholar 

  • Östergren, G.: Heterochromatic B-chromosomes inAnthoxanthum. Hereditas33, 261–296 (1947).

    Google Scholar 

  • —: Isopycnosis and isopycnotic, two new terms for use in chromosome studies. Hereditas36, 511–513 (1950).

    Google Scholar 

  • Östergren, G., andR. Prakken: Behaviour on the spindle of the actively mobile chromosome ends of rye. Hereditas32, 473–494 (1946).

    Google Scholar 

  • Pathak, G. N.: Studies in the cytology of cereals. J. Genet.39, 437–467 (1940).

    Google Scholar 

  • Pesola, V. A.: Rye and wheat breeding in Finland. Heredity2, 141–143 (1948).

    Google Scholar 

  • Prakken, R.: Studies of asynapsis in rye. Hereditas29, 475–495 (1943).

    Google Scholar 

  • Prakken, R., andA. Müntzing: A meiotic peculiarity in rye, simulating a terminal centromere. Hereditas28, 441–482 (1942).

    Google Scholar 

  • Randolph, L. F.: Genetic characteristics of the B chromosomes in maize. Genetics26, 608–631 (1941).

    Google Scholar 

  • —: Inherited differences in pachytene configurations in maize. Genetics33, 121 (1948).

    Google Scholar 

  • Rhoades, M. M.: Meiosis in maize. J. Hered.41, 58–67 (1950).

    Google Scholar 

  • Ris, H.: The structure of meiotic chromosomes in the grasshopper and its bearing on the nature of “chromomeres” and “lamp-brush chromosomes”. Biol. Bull.89, 242–257 (1945).

    Google Scholar 

  • Schultz, J.: The function of heterochromatin. Proc. VII. Internat. Genet. Congr. Edinburgh1941, S. 257–262.

  • Sears, E. R.: The cytology and genetics of the Wheats and their relatives. Adv. Genet.2, 239–270 (1948).

    Google Scholar 

  • Tjio, J. H., andA. Levan: The use of oxiquinoline in chromosome analysis. Anales Est. Exper. Aula Dei2, 21–64 (1950).

    Google Scholar 

  • White, M. J. D.: Animal cytology and evolution. Cambridge, 1945. 375 S.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima-de-Faria, A. Chromomere analysis of the chromosome complement of rye. Chromosoma 5, 1–68 (1953). https://doi.org/10.1007/BF01271482

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01271482

Keywords

Navigation