Skip to main content
Log in

A new approach to variable-topology shape design using a constraint on perimeter

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

This paper introduces a method for variable-topology shape optimization of elastic structures called theperimeter method. An upper-bound constraint on the perimeter of the solid part of the structure ensures a well-posed design problem. The perimeter constraint allows the designer to control the number of holes in the optimal design and to establish their characteristic length scale. Finite element implementations generate practical designs that are convergent with respect to grid refinement. Thus, an arbitrary level of geometric resolution can be achieved, so single-step procedures for topology design and detailed shape design are possible. The perimeter method eliminates the need for relaxation, thereby circumventing many of the complexities and restrictions of other approaches to topology design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire, G.; Francfort, G.A. 1993: A numerical algorithm for topology and shape optimization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 239–248. Dordrecht: Kluwer

    Google Scholar 

  • Allaire, G.; Kohn, R.V. 1993: Topology design and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C. A. (eds.)Topology design of structures, pp. 207–218. Dordrecht: Kluwer

    Google Scholar 

  • Ambrosio, L.; Buttazzo, G. 1993: An optimal design problem with perimeter penalization.Calculus of Variations and Partial Differential Equations 1, 55–69

    Google Scholar 

  • Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem.Struct. Optim. 1, 193–202

    Google Scholar 

  • Bendsøe, M.P.; Diaz, A.; Kikuchi, N. 1993: Topology and generalized layout optimization of elastic structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 159–205. Dordrecht: Kluwer

    Google Scholar 

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Eng. 71, 197–224

    Google Scholar 

  • Cheng, K.T.; Olhoff, N. 1981: An investigation concerning optimal design of solid elastic plates.Int. J. Solids & Struct. 17, 305–323

    Google Scholar 

  • Eschenauer, H.A.; Kobolev, V.; Schumacher, A. 1994: Bubble method of topology and shape optimization of structures.Struct. Optim. 8, 42–51

    Google Scholar 

  • Evans, L.C.; Gariepy, R.F. 1992:Measure theory and fine properties of functions. Boca Ratan: CRC Press

    Google Scholar 

  • Gibiansky, L.V.; Cherkaev, A.V. 1987: Microstructures of composites of extremal rigidity and exact estimates of the associated energy density.Ioffe Physicotechnical Institute, Preprint 1115, Leningrad (in Russian); also in: Kohn, R.V. (ed.) 1994:Topics in the mathematical modeling of composite materials. New York: Birkhauser

  • Goodman, J.; Kohn, R.V.; Reyna, L. 1986: Numerical study of a relaxed variational problem for optimal design.Comp. Meth. Appl. Mech. Eng. 57, 107–127

    Google Scholar 

  • Haber, R.B.; Jog, C.S.; Bendsøe, M.P. 1994: Variable-topology shape optimization with a control on perimeter. In: Gilmore, B.J.; Hoeltzel, D.A.; Dutta, D.; Eschenauer, H.A. (eds.)Advances in design automation, pp. 261–272. Washington D.C.: AIAA

    Google Scholar 

  • Jog, C.S.; Haber, R.B. 1995: Stability of finite element models for distributed-parameter optimization and topology design.Comp. Meth. Appl. Mech. Eng. (to appear)

  • Jog, C.S.; Haber, R.B.; Bendsøe, M.P. 1993: A displacement-based topology design method with self-adaptive layered materials. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 219–238. Dordrecht: Kluwer

    Google Scholar 

  • Jog, C.S.; Haber, R.B.; Bendsøe, M.P. 1994: Topology design with optimized, self-adaptive materials.Int. J. Num. Methods Engng. 37, 1323–1350

    Google Scholar 

  • Kohn, R.V. 1991: Composite materials and structural optimization.Proc. Workshop on Smart/Intelligent Materials and Systems. (held in Honolulu, 1990). Lancaster, Pa.: Technomic Press

    Google Scholar 

  • Kohn, R.V.; Strang, G. 1986: Optimal design and relaxation of variational problems.Comm. Pure Appl. Math. 39, 1–25 (Part I), 139–182 (Part II), 353–377 (Part III)

    Google Scholar 

  • Lurie, A.K.; Federov, A.V.; Cherkaev, A.V. 1982: Regularization of optimal design problems for bars and plates.J. Optimiz. Theory & Appl. 37, 499–521 (Part I), 523–543 (Part II)

    Google Scholar 

  • Mlejnek, H. 1992: Some aspects of the genesis of structures.Struct. Optim. 5, 64–69

    Google Scholar 

  • Murat, F. 1977: Contre-exemples pour divers problemes ou le controle intervient dans les coefficients.Ann. Mat. Pura et Appl. 112, 49–68

    Google Scholar 

  • Murat, F.; Tartar, L. 1985: Calcul des variations et homogeneisation. In:Les methodes de l'homogeneisation: theorie et applications en physique, pp. 319–370. Col. de la Dir. des Etudes et Recherches de Electricité de France, Eyrolles, Paris

  • Rodrigues, H.; Fernandes, P. 1995: A material based model for topology optimization of thermoelastic structures.Int. J. Num. Methods Engng. 37, 1951–1965

    Google Scholar 

  • Rozvany, G.I.N. 1993: Layout theory for grid-type structures. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology design of structures, pp. 251–272. Dordrecht: Kluwer

    Google Scholar 

  • Sigmund, O. 1995: Design of material structures using topology optimization.DCAMM Special Report No. S69, Technical University of Denmark

  • Sokolnikoff, I.S. 1987:Mathematical theory of elasticity. Florida: Robert Krieger

    Google Scholar 

  • Suzuki, K.; Kikuchi, N. 1991: Shape and topology optimization for generalized layout problems using the homogenization method.Comp. Meth. Appl. Mechs. Engng. 93, 291–318

    Google Scholar 

  • Tartar, L. 1977: Estimation de coefficents homogeneises.Lecture Notes in Mathematics 704, pp. 364–373. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Wheedon, R.L.; Zygmund, A. 1977:Measure and integral: an introduction to real analysis. Monographs in Pure and Applied Math.43. New York: Marcel Dekker

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, R.B., Jog, C.S. & Bendsøe, M.P. A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization 11, 1–12 (1996). https://doi.org/10.1007/BF01279647

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01279647

Keywords

Navigation