Skip to main content
Log in

Morphological and cytochemical analysis of an unusual nucleus-pyrenoid association in a unicellular red alga

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Protrusions of the nucleus that extend into the pyrenoid of the unicellular red algaRhodella maculata have been characterised morphologically and cytochemically. Serial reconstructions indicate that cells frequently have two tubular nuclear protrusions that are up to 1.2 μm long. Cytochemical analyses were undertaken to investigate the nucleic acid content of the protrusions. DNA was not detected in the nuclear protrusions, though clear labelling was seen in all other DNA-containing zones (viz. the main nuclear compartment, the chloroplast and the mitochondria). High concentrations of RNA were observed in the nuclear protrusion. In situ hybridization experiments indicate that ribosomal RNAs are not a major component of the protrusion RNA. Possible roles of the protrusion and its RNA content are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNA:

deoxyribonucleic acid

RNA:

ribonucleic acid

rRNA:

ribosomal RNA

References

  • Andersen RA, Jacobsen DM, Sexton JP (1991) Provasoli-Guillard Centre for Culture of Marine Phytoplankton: catalogue of strains. Provasoli-Guillard Centre for Culture of Marine Phytoplankton, West Boothbay Harbor, ME

    Google Scholar 

  • Bendayan M (1981) Ultrastructural localization of nucleic acids by the use of enzyme-gold complexes. J Histochem Cytochem 29: 531–541

    PubMed  Google Scholar 

  • Chamberland H, Lafontaine JG (1993) Localization of snRNP antigens in nucleolus-associated bodies: study of plant interphase nuclei by confocal and electron microscopy. Chromosoma 102: 220–226

    Google Scholar 

  • Coleman AW (1985) Diversity of plastid DNA configuration among classes of eukaryote algae. J Phycol 21: 1–16

    Google Scholar 

  • Evans LV (1970) Electron microscopical observations on a new red algal unicell,Rhodella maculata gen. Nov., sp. nov. Br Phycol J 5: 1–13

    Google Scholar 

  • Gillott MA, Gibbs SP (1980) The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J Phycol 16: 55–568

    Google Scholar 

  • Hansmann P (1988) Ultrastructural localization of RNA in cryptomonads. Protoplasma 146: 81–88

    Google Scholar 

  • —, Falk H (1986) Ultrastructural localization of DNA in two Cryptomonas species by use of a monoclonal DNA antibody. Eur J Cell Biol 42: 152–160

    Google Scholar 

  • Hayat MA (1970) Principles and techniques of electron microscopy. Biological applications, vol 1. Van Nostrand Reinhold, New York

    Google Scholar 

  • He D, Nickerson JA, Penman S (1990) Core filaments of the nuclear matrix. J Cell Biol 110: 569–580

    PubMed  Google Scholar 

  • Hibberd DJ, Norris RE (1984) Cytology and ultrastructure ofChlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20: 310–330

    Google Scholar 

  • Hill DRA (1991) A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170–188

    Google Scholar 

  • —, Wetherbee R (1988) The structure and taxonomy ofRhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia 27: 355–365

    Google Scholar 

  • Ludwig M, Gibbs SP (1987) Are the nucleomorphs of cryptomonads andChlorarachnion the vestigial nuclei of eukaryotic endosymbionts? Ann NY Acad Sci 503: 198–211

    Google Scholar 

  • — — (1989) Evidence that the nucleomorphs ofChlorarachnion reptans (Chlorarachniophyceae) are vestigial nuclei: morphology, division, and DNA-DAPI fluorescence. J Phycol 25: 85–394

    Google Scholar 

  • Maniatis T, Reed R (1987) The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature 325: 673–678

    PubMed  Google Scholar 

  • McFadden GI (1991) In situ hybridization for electron microscopy: molecular cytology goes ultrastructural. In: Hall JR, Howes CR (eds) Electron microscopy of plant cells. Academic Press, London, pp 219–255

    Google Scholar 

  • — (1993) Second-hand chloroplasts: evolution of cryptomonad algae. Adv Bot Res 19: 189–230

    Google Scholar 

  • — (1994) In situ hybridization of RNA. In: Harris N, Oparka KJ (eds) Plant cell biology: a practical approach. IRL Press, Oxford, pp 97–125

    Google Scholar 

  • — (1995) Something borrowed something green. Lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10: 12–17

    Google Scholar 

  • —, Hill DRA (1994)Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29: 29–32

    Google Scholar 

  • Moreno Diaz de la Espina S, Minguez A, Vazquez-Nin GH, Echeverria OM (1992) Fine structural organization of a non-reticulate plant cell nucleus. Chromosoma 101: 311–321

    Google Scholar 

  • Motte PM, Loppes U, Menager M, Deltour R (1991) Three-dimensional electron microscopy of ribosomal chromatin in two higher plants: a cytochemical, immunocytochemical and in situ hybridization approach. J Histochem Cytochem 39: 1495–1506

    PubMed  Google Scholar 

  • Mukhopadhyay S (1993) Investigation on localization of DNA in the nucleolus-associated bodies ofPisum sativum L. Cytologia 58: 267–272

    Google Scholar 

  • —, Mukhopadhyay MJ (1992) Cytochemical characterization of two types of nuclear bodies inCicer arietinum L. Eur J Cell Biol 59: 296–303

    PubMed  Google Scholar 

  • Nickerson JA, Krochmainic G, Wan KM, Penman S (1989) Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA 86: 177–181

    PubMed  Google Scholar 

  • Norris RE, Hori T, Chihara M (1980) Revision of the genus Tetraselmis (class Prasinophyceae). Bot Mag Tokyo 39: 317–319

    Google Scholar 

  • Okada M (1992) Recent studies of the composition and activity of algal pyrenoids. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 8. Bio press, Bristol, pp 117–138

    Google Scholar 

  • Parke M, Manton I (1965) Preliminary observations on the fine structure ofPrasinocladus marinus. J Mar Biol Assoc UK 45: 525–536

    Google Scholar 

  • Patrone LM, Broadwater ST, Scott JL (1991) Ultrastructure of vegetative and dividing cells of the unicellular red algaeRhodella violacea andRhodella maculata. J Phycol 27: 742–753

    Google Scholar 

  • Provasoli L, Yamasu T, Manton I (1968) Experiments on the resynthesis of symbiosis inConvoluta roscoffensis with different flagellate cultures. J Mar Biol Assoc UK 48: 465–479

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17: 208–212

    PubMed  Google Scholar 

  • Rochaix J-D, Mayfield S, Goldschmidt-Clermont M, Erickson J (1988) Molecular biology ofChlamydomonas. In: Shaw CH (ed) Plant molecular biology. IRL Press, Oxford, pp 253–275

    Google Scholar 

  • Salditt-Georgieff M, Harpold M, Wilson MC, Darnell JE Jr (1981) Large heterogeneous nuclear ribonucleic acid has three times as many 5′e caps as polyadenylic acid segments, and most caps do not enter polyribosomes. Mol Cell Biol 1: 179–187

    PubMed  Google Scholar 

  • Sambrook, J, Fritsch, EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Ultrastruct Res 26: 31–36

    PubMed  Google Scholar 

  • Thiry M (1988) Study of RNA distribution in the nucleolar components of Ehrlich cell using RNase-gold method. Histochemistry 89: 231–236

    PubMed  Google Scholar 

  • —, Thiry-Blaise L (1989) In situ hybridization at the electron microscope level: an improved method for precise localization of ribosomal DNA and RNA. Eur J Cell Biol 50: 235–243

    PubMed  Google Scholar 

  • Tremblay SD, Lafontaine JG (1992) Composition of nuclear dense bodies and nucleolus-associated bodies in interphase nuclei of the unicellular green algaChlamydomonas reinhardtii. Biol Cell 76: 67–72

    Google Scholar 

  • Wachtler F, Stahl A (1993) The nucleolus: a structural and functional interpretation. Micron 24: 473–505

    Google Scholar 

  • Wehrmeyer W (1971) Elektronmikroskopische Untersuchung zur Feinstruktur vonPorphyridium violaceum Kornmann mit Bemerkungen über seine taxonomische Stellung. Arch Mikrobiol 75: 121–139

    Google Scholar 

  • Weibel ER (1969) Stereological principles of morphometry in electron microscopic cytology. Int Rev Cytol 26: 235–302

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, R.F., McFadden, G.I. Morphological and cytochemical analysis of an unusual nucleus-pyrenoid association in a unicellular red alga. Protoplasma 186, 131–141 (1995). https://doi.org/10.1007/BF01281323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281323

Keywords

Navigation