Skip to main content
Log in

Laminar forced convection of power-law non-Newtonian fluids inside ducts

Laminare Zwangskonvektion von nicht-Newtonschen Fluiden, die in Kanälen strömen und dem Potenzansatz folgen

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Thermal entrance region heat transfer for laminar forced convection of power-law fluids inside a circular tube and parallel plate channel for uniform wall temperature is solved exactly, and as many eigenvalues and eigenfunctions as needed for the solution are determined automatically and with high accuracy by using the recently advanced Sign-Count method. Results are presented for the local and average Nusselt number over a wide range of the Graetz number in both graphical and tabular forms. The present benchmark results are utilized to critically examine the accuracy of the approximate Leveque solution.

Zusammenfassung

Es werden exakte Lösungen für den Wärmetransport in der thermischen Einlaufzone in runden Rohren und zwischen parallelen Platten für Fluide nach dem Exponentialansatz bei laminarer Zwangskonvektion und mit gleichmäßiger Wandtemperatur angegeben. Unter Benutzung der jüngst verbesserten Sign-Count-Methode werden so viele Eigenwerte und Eigenfunktionen, wie für die Lösung benötigt, automatisch und mit großer Genauigkeit bestimmt. Ergebnisse werden in graphischer wie tabellarischer Form über einen weiten Bereich der Graetz-Zahl für die örtliche und mittlere Nusselt-Zahl vorgestellt. Die vorliegenden richtungsweisenden Ergebnisse werden dazu benützt, um die Genauigkeit der Levequeschen Näherungslösung kritisch zu prüfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

radius of circular duct or half the spacing between parallel plates

C :

\(\frac{{1 + (2 + p)n}}{{1 + n}}\)

D h :

hydraulic diameter=4b for parallel plate, 2b for circular tube

f(r), F(r) :

temperature distribution at the inlet, dimensional and dimensionless, respectively

g (r), G (R) :

energy generation, dimensional and dimensionless, respectively

h (z) :

heat transfer coefficient

H i(Z):

defined by Eq. (11b)

k :

thermal conductivity

l0,l N :

reference lengths to nondimensionalizer andz coordinates respectively (l 0=b andl N= Dh)

n :

power-law index

Nu av :

average Nusselt number=h av Dh/k

Nu (Z):

local Nusselt number=h (z)D h/k

p :

0 for parallel-plate duct, 1 for circular duct

r :

radial or normal coordinate

R :

\(\frac{r}{{l_0 }}\) = dimensionless radial coordinate

T(r, z) :

fluid temperature

T av (z):

average fluid temperature

T * :

reference temperature

ΔT :

reference temperature difference

U(R):

\(\frac{{w(r)}}{{w_{av} }}\) = normalized velocity profile

U *(R):

\(1 - \left( {\frac{{l_0 }}{b}R} \right)^{\frac{{n + 1}}{n}} \)

w (r) :

fully developed velocity profile

w av :

average velocity

z:

axial coordinate

Z :

\(\frac{{\alpha z}}{{w_{av} l_N^2 }}\) = dimensionless axial coordinate

α :

thermal diffusivity

θ (R,Z) :

\(\frac{{T(r,z) - T^* }}{{\Delta {\rm T}}}\) = dimensionless temperature

θ w :

\(\frac{{T_w (z) - T^* }}{{\Delta {\rm T}}}\) = dimensionless wall temperature

μ i :

eigenvalues of the eigenvalue problem (10)

ψi,R):

eigenfunctions of the eigenvalue problem (10)

References

  1. Metzner, A. B.: Heat transfer in non-Newtonian fluids. Adv. Heat Transfer 2 (1965) 357–394

    Google Scholar 

  2. Skelland, A. H. P.: Non-Newtonian flow and heat transfer. New York: John Wiley & Sons 1967

    Google Scholar 

  3. Bird, R. B.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids, Vol. 1. New York: John Wiley & Sons 1977

    Google Scholar 

  4. Winter, H. H.: Viscous dissipation in shear flows of molten polymers. Adv. Heat Transfer 13 (1977) 205–264

    Google Scholar 

  5. Cho, Y. I.; Hartnett, J. P.: Non-Newtonian fluids in circular pipe flow. Adv. Heat Transfer 15 (1982) 60–134

    Google Scholar 

  6. Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts. Adv. Heat Transfer, Suppl. 1 (1978)

  7. Lyche, C. B.; Bird, R. B.: The Graetz-Nusselt problem for a power-law non-Newtonian fluid. Chem. Eng. Sci. 6 (1956) 35–41

    Google Scholar 

  8. Toor, H. L.: Heat transfer in forced convection with internal heat generation. AIChE J. 4 (1958) 319–323

    Google Scholar 

  9. Tien, C.: Laminar heat transfer of power-law non-Newtonian fluid — The extension of Graetz-Nusselt problem. Canadian J. Chem. Eng. 40 (1962) 130–134

    Google Scholar 

  10. Suckow, W. H.; Hrycak, P.; Griskev, R. G.: Heat transfer to non-Newtonian dilatant (Shear-thickening) fluids flowing between parallel plates. AIChE Symp. Ser. 76 (1980) 257–263

    Google Scholar 

  11. Ybarra, R. M.; Eckert, R. E.: Viscous heat generation in slit flow. AIChE J. 26 (1980) 751–762

    Google Scholar 

  12. Dinh, S. M.; Armstrong, R. C.: Non-isothermal channel flow of non-Newtonian fluids with viscous heating. AIChE J. 28 (1982) 294–301

    Google Scholar 

  13. Richardson, S. M.: Extended leveque solutions for flows of power law fluids in pipes and channels. Int. J. Heat Mass Transfer 22 (1979) 1417–1423

    Google Scholar 

  14. Shih, Y. P.; Tsou, J. D.: Extended leveque solutions for heat transfer to power law fluids in laminar flow in a pipe. Chem. Eng. J. 15 (1978) 55–62

    Google Scholar 

  15. Mikhailov, M. D.; Özi§ik, M. N.; Vulchanov, N. L.: Transient heat diffusion in one-dimensional composite media and automatic solution of the eigenvalue problem. Int. J. Heat Mass Transfer 26 (1983) 1131–1141

    Google Scholar 

  16. Mikhailov, M. D.; Özi§ik, M. N.: Unified analysis and solutions of heat and mass diffusion. New York: John Wiley & Sons 1984

    Google Scholar 

  17. Mikhailov, M. D.; Vulchanov, N. L.: A computational procedure for Sturm-Liouville problems. J. Comp. Phys. 50 (1983) 323–336

    Google Scholar 

  18. Vlachopaulos, J.; Keung, C. K. J.: Heat transfer to a powerlaw fluid flowing between parallel plates. AIChE J. 18 (1972) 1272–1274

    Google Scholar 

  19. Shah, R. K.: Thermal entry solutions for the circular tube and parallel plates. Proc. Natl. Heat Mass Transfer Conf., 3rd, Indian Inst. Technol. Bombay, Vol. 1, pap. no. HMT-11-75, 1975

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotta, R.M., Özi§ik, M.N. Laminar forced convection of power-law non-Newtonian fluids inside ducts. Wärme- und Stoffübertragung 20, 211–218 (1986). https://doi.org/10.1007/BF01303453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303453

Keywords

Navigation