Skip to main content
Log in

Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer metastasis poses the greatest challenge to the eradication of malignancy. The majority of clinical and experimental evidence indicates that metastasis is a non-random, organ-specific process. Tumor cell interaction with endothelium and subendothelial matrix constitutes the most crucial factor in determining the organ preference of metastasis. A plethora of cell surface adhesion molecules, which encompass four major families (i.e., integrins, cadherins, immunoglobulins and selectins) and many other unclassified molecules, mediate tumor-host interactions. Adhesion molecules and adhesion processes are involved in most, if not all, of the intermediate steps of the metastatic cascade. Decreased E-cadherin expression and increased CD44 expression are clearly correlated with the acquisition of the invasive capacity of primary tumor cells. Similarly, altered expression pattern of many other adhesion molecules such as upregulated expression of the laminin receptors and depressed expression of fibronectin receptors (α5β1) appears to be involved in tumor cell invasion into the subendothelial matrix. Tumor cell-endothelium interactions involve several well-defined sequential steps that can be analyzed by the ‘Docking and Locking’ hypothesis at the molecular level. Tumor cell-matrix interactions are determined by the repertoire of adhesion receptors of tumor cells and the unique composition of organ-specific matrices. Our experimental data, together with others', suggest that the integrin αIIbβ3 is one of the major players in these tumor-host interactions. Tumor-host interaction is a dynamic process which is constantly modulated by a host of factors including various cytokines, growth factors and arachidonate metabolites such as 12(S)-HETE. Delineation of the molecular mechanisms of tumor-host interactions may provide additional means to intervene in the metastatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WeissL, OrrFW, HonnKV: Interactions of cancer cells with the microvasculature during metastasis. FASEB J 2: 12–21, 1988

    Google Scholar 

  2. WeissL, OrrFW, HonnKV: Interactions between cancer and the microvasculature: a rate-regulator for metastasis. Clin Expl Metastasis 7: 127–167, 1989

    Google Scholar 

  3. LiottaLA: Tumor invasion and metastasis: role of the extracellular matrix. Cancer Res 46: 1–7, 1986

    PubMed  Google Scholar 

  4. AuerbachR: Pattern of tumor metastasis: organ selectivity in the spread of cancer cells. Lab Invest 58: 361–364, 1988

    PubMed  Google Scholar 

  5. ZetterBR: The cellular basis of site-specific tumor metastasis. N Eng J Med 322: 605–612, 1990

    Google Scholar 

  6. NicolsonGL: Tumor and host molecules important in the organ preference of metastasis. Seminars Cancer Biol 2: 143–154, 1991

    Google Scholar 

  7. BelloniPN, TresslerRJ: Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev 8: 353–389, 1990

    PubMed  Google Scholar 

  8. PauliBU, Augustin-VossHG, El-SabbanME, JohnsonRC, HammarDA: Organ preference of metastasis: the role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9: 175–189, 1990

    PubMed  Google Scholar 

  9. Honn KV, Powers WE, Sloane BF (eds): Mechanisms of Cancer Metastasis: Potential Therapeatic Implications. Martinus Nijhoff Publishing, 1986

  10. Honn KV, Tang DG, Chen YQ: Adhesion molecules and site-specific metastasis. In: Serneri GGN, Genshi GF, Abbate R, Prisco (eds) Thrombosis: An Update. Scientific Press, Florence, pp. 269–303.

  11. SommersCL, ThompsonEW, TorriJA, KemlerR, GelmannEP, ByersSW: Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ 2: 365–372, 1991

    PubMed  Google Scholar 

  12. SchipperJH, FrixenUH, BehrensJ, UngerA, JahnkeK, BirchmeierW: E-cadherin expression in squamous cell carcinoma of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51: 6328–6337, 1991

    PubMed  Google Scholar 

  13. HaynesBF, TelenMJ, HaleLP, DenningSM: CD44: a molecule involved in leukocyte adherence and T-cell activation. Immunol Today 10: 423–428, 1989

    PubMed  Google Scholar 

  14. HaynesBF, LiaoHX, PattonKL: The transmembrane hyaluronate receptor (CD44): multiple function, multiple forms. Cancer Cells 3: 347–350, 1991

    PubMed  Google Scholar 

  15. ZutterMM, MazoujianG, SantoroSA: Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol 137: 863–870, 1990

    PubMed  Google Scholar 

  16. FeldmanLE, ShinKC, NataleRB, TodIIIRF: β1 integrin expression on human small cell lung cancers. Cancer Res 51: 1065–1070, 1991

    PubMed  Google Scholar 

  17. CastronovoV, TarabolettiG, LiottaLA, SobelME: Modulation of laminin receptor expression by estrogen and progestins in human breast cancer cell lines. JNCI 81: 781–788, 1989

    PubMed  Google Scholar 

  18. DedharS, SaulnierR: Alterations in integrin receptor expression on chemically transformed human cells: specific enhancement of laminin and collagen receptor complexes. J Cell Biol 110: 481–489, 1990

    PubMed  Google Scholar 

  19. CioceV, CastronovoV, ShmooklerBM, GarbisaS, GrigioniWF, LiottaLA, SobelME: Increased expression of the laminin receptor in human colon cancer. JNCI 83: 29–36, 1991

    PubMed  Google Scholar 

  20. TakeichiM: Cadherins: a molecular family important in selective cell-cell adhesion. Ann Rev Biochem 59: 237–252, 1990

    PubMed  Google Scholar 

  21. EdelmanGM, CrossinKV: Cell adhesion molecules: implications for a molecular histology. Ann Rev Biochem 60: 155–190, 1991

    PubMed  Google Scholar 

  22. SmithCW, AndersonDC: PMN adhesion and extravasation as a paradigm for tumor cell dissemination. Cancer Metastasis Rev 10: 61–78, 1991

    PubMed  Google Scholar 

  23. ButcherEC: Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 61: 1033–1036, 1991

    Google Scholar 

  24. HemlerME: VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol 8: 365–400, 1990

    PubMed  Google Scholar 

  25. AlbeldaSM: Endothelial and epithelial cell adhesion molecules. Am J Respir Cell Mol Biol 4: 195–203, 1991

    PubMed  Google Scholar 

  26. LanguinoLR, GehlsenKR, WaynerEA, CarterWG, EngvallE, RuoslhtiE: Endothelial cells use alpha-2 beta-1 integrin as a laminin receptor. J Cell Biol 109: 2455–2462, 1990

    Google Scholar 

  27. WaynerEA, CarterWG, PiotrowiczRS, KunickiTJ: The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that significantly inhibit cell adhesion to fibronectin and react with platelet glycoprotein Ic-IIa. J Cell Biol 107: 1881–1891, 1988

    PubMed  Google Scholar 

  28. HolzmannB, WeissmannIL: Peyer's patch specific lymphocyte homing receptor consists of a VLA-4-like alpha chain associated with either of two beta chains, one of which is novel. EMBO J 8: 1735–1741, 1989

    PubMed  Google Scholar 

  29. ElicesMJ, OsbornL, TakadaY, CrouseC, LuhowskyjS, HemlerME, LobbRR: VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a distinct site from the VLA-4/fibronectin binding site. Cell 60: 577–584, 1990

    PubMed  Google Scholar 

  30. SonnerbergA, ModdermanPW, HogervostF: Laminin receptor on platelets is the integrin VLA-6. Nature 336: 487–489, 1988

    PubMed  Google Scholar 

  31. KramerRH, VuMP, ChenyYF, RamosDM, TimplR, WalehN: Laminin-binding integrin α7β1: functional characterization and expression in normal and malignant melanocytes. Cell Regulation 2: 805–817, 1991

    PubMed  Google Scholar 

  32. BossyB, Bossy-WetzelE, ReichardtLF: Characterization of the integrin α8 subunit: a new integrin β1-associated subunit, which is predominantly expressed on axons and on cells in contact with basal laminae in chicken embryos. EMBO J 10: 2375–2385, 1991

    PubMed  Google Scholar 

  33. VogelBE, TaroneG, GiancottiFG, GailitJ, RuoslahtiE: A novel fibronectin receptor with an unexpected subunit composition (αvβ1). J Biol Chem 265: 5934–5940, 1990

    PubMed  Google Scholar 

  34. KiefferN, PhillipsDR: Platelet membrane glycoproteins: functions in cellular interactions. Ann Rev Cell Biol 6: 329–357, 1990

    PubMed  Google Scholar 

  35. GrossiIM, HatfieldJS, FitzgeraldLA, NewcombeM, TaylorJD, HonnKV: Role of tumor cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumor cell-platelet and tumor cell-matrix interactions. FASEB J 2: 2385–2395, 1988

    PubMed  Google Scholar 

  36. McGregorBC, McGregorJL, WeissLM, WoodGS, HuCH, BoukercheH, WarnkeRA: Presence of cytoadhesins (IIb-IIIa-like glycoproteins) on human metastatic melanomas but not on benign melanocytes. Am J Clin Pathol 92: 495–499, 1989

    PubMed  Google Scholar 

  37. KramerRH, ChengYF, ClymanR: Human vascular endothelial cells use β1 and β3 integrin receptor complexes to attach to laminin. J Cell Biol 110: 1233–1243, 1990

    Google Scholar 

  38. ChengYF, ClymanRI, EnensteinJ, WalehN, PytelaR, KramerRH: The integrin complex αvβ3 participates in the adhesion of microvascular endothelial cells to fibronectin. Exp Cell Res 194: 69–77, 1991

    PubMed  Google Scholar 

  39. KajijiS, TamuraRN, QuarantaV: A novel integrin (alpha E/beta 4) from human epithelial cell suggests a fourth family of integrin adhesion receptors. EMBO J 8: 673–680, 1989

    PubMed  Google Scholar 

  40. KennelSJ, GodfreyV, Ch'angLY, LankfordTK, FooteLJ, MakkinjeA: The β4 subunit of the integrin family is displayed on a restricted subset of endothelium in mice. J Cell Sci 101: 145–150, 1992

    PubMed  Google Scholar 

  41. FreedE, GailitJ, van derGeerP, RuoslahtiE, HunterT: A novel integrin beta subunit is associated with the vitronectin receptor alpha subunit in a human osteosarcoma cell line and is a substrate for protein kinase C. EMBO J 8: 2955–2965, 1989

    PubMed  Google Scholar 

  42. SmithJW, VestalDJ, IrwinSV, BurkeTA, ChereshDA: Purification and functional characterization of integrin αvβ5: an adhesion receptor for vitronectin. J Biol Chem 265: 11008–11013, 1990

    PubMed  Google Scholar 

  43. SheppardD, RozzoC, StarrL, QuarantaV, ErleDJ, PytelaR: Complete amino acid sequence of a novel integrin β subunit (β6) identified in epithelial cells using the polymerase chain reaction. J Biol Chem 265: 11502–11507, 1990

    PubMed  Google Scholar 

  44. BuskM, PytelaR, SheppardD: Characterization of the integrin αvβ6 as a fibronectin-binding protein. J Biol Chem 267: 5790–5796, 1992

    PubMed  Google Scholar 

  45. ErleDJ, RueggC, SheppardD, PytelaR: Complete amino acid sequence of integrin β subunit (β7) identified in leukocytes. J Biol Chem 266: 11009–11016, 1991

    PubMed  Google Scholar 

  46. YuanQ, JiangWM, LeungE, HollanderD, WatsonJD, KrissansenGW: Molecular cloning of the mouse integrin β7 subunit. J Biol Chem 267: 7352–7358, 1992

    PubMed  Google Scholar 

  47. MoyleM, NapierMA, McleanJW: Cloning and expression of a divergent integrin subunit β8. J Biol Chem 266: 19650–19658, 1991

    PubMed  Google Scholar 

  48. DedharS, GrayV: Isolation of a novel integrin receptor mediating Arg-Gly-Asp-directed cell adhesion to fibronectin and type I collagen from human neuroblastoma cells. Association of a novel β1-related subunit with αv. J Cell Biol 110: 2185–2193, 1990

    PubMed  Google Scholar 

  49. GreshamHD, GoodwinJL, AllenPM, AndersonDC, BrownEJ: A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol 108: 1935–1943, 1989

    PubMed  Google Scholar 

  50. AlbeldaSM, BuckCA: Integrins and other cell adhesion molecules. FASEB J 4: 2868–2880, 1990

    PubMed  Google Scholar 

  51. RuoslahtiE, GiancottiFG: Integrins and tumor cell dissemination. Cancer Cells 4: 119–126, 1989

    Google Scholar 

  52. HynesRO, LanderAD: Contact and adhesive specificties in the associations, migrations, and targeting of cells and axons. Cell 68: 303–322, 1992

    PubMed  Google Scholar 

  53. YamadaKM: Adhesive recognition sequences. J Biol Chem 266: 12809–12812, 1991

    PubMed  Google Scholar 

  54. BurridgeK, FathK: Focal contacts: transmembrane linked between the extracellular matrix and cytoskeleton. Bioessays 10: 104–108, 1989

    PubMed  Google Scholar 

  55. IngberD: Integrins as mechanochemical transducers. Curr Opinion Cell Biol 3: 841–848, 1991

    PubMed  Google Scholar 

  56. YamaguchiA, TanoueK, YamazakiH: Secondary signals mediated by GpIIb/IIIa in thrombin-activated platelets. Biochim Biophys Acta 1054: 8–13, 1990

    PubMed  Google Scholar 

  57. FujimotoT, FujimuraK, KuramotoA: Functional Ca2+ channel produced by purified platelet membrane glycoprotein IIb-IIIa complex incorporated into planar phospholipid bilayer. Thromb Haemost 66: 598–603, 1991

    PubMed  Google Scholar 

  58. SchwartzMA, LecheneC, IngberDE: Insoluble fibronectin activates the Na/H antipoter by clustering and immobolizing integrin α5β1, independent of cell shape. Proc Natl Acad Sci USA 88: 7849–7853, 1991

    PubMed  Google Scholar 

  59. SchwartzMA, IngberDE, LawrenceM, SpringerTA, LecheneC: Multiple integrins share the ability to induce elevations of intracellular pH. Exp Cell Res 195: 533–535, 1991

    PubMed  Google Scholar 

  60. FerrelJE, MartinGS: Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci USA 86: 2234–2238, 1989

    PubMed  Google Scholar 

  61. KornbergLJ, EarpHS, TurnerCE, ProckopC, JulianoRL: Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering β1 integrins. Proc Natl Acad Sci USA 88: 8392–8396, 1991

    PubMed  Google Scholar 

  62. RichterJ, Ng-SikorskiJ, OlssonI, AnderssonT: Tumor necrosis factor-induced degranulation in adherent human neutrophils is dependent on CD11b/CD18 integrin-triggered oscillation of cytosolic free Ca2+. Proc Natl Acad Sci USA 87: 9472–9476, 1990

    PubMed  Google Scholar 

  63. NathanC, SanchezE: Tumor necrosis factor and CD11/CD18 (β2) integrins act synergistically to lower cAMP in human neutrophils. J Cell Biol 111: 2171–2181, 1990

    PubMed  Google Scholar 

  64. WerbZ, TremblePM, BehrendtsenO, CrowleyE, DamskyCH: Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109: 877–889, 1989

    PubMed  Google Scholar 

  65. SeftorREB, SeftorEA, GehlsenKR, Stetler-StevensonWG, BrownPD, RuoslahtiE, HendrixMJC: Role of αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557–1561, 1992

    PubMed  Google Scholar 

  66. HartIR, BirchM, MarshallJF: Cell adhesion receptor expression during melanoma progression and metastasis. Cancer Metastasis Rev 10: 115–128, 1991

    PubMed  Google Scholar 

  67. GehlsenKR, DavisGE, SriramaraoP: Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10: 111–120, 1992

    PubMed  Google Scholar 

  68. AlbeldaSM, MetteSA, ElderDE, StewartRM, Damjanovich, HerlynM, BuckCA: Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 50: 6757–6764, 1990

    PubMed  Google Scholar 

  69. PerrottiD, CiminoL, FalcioniR, TibursiG, GentileschiMP, SacchiA: Metastatic phenotype: growth factor dependence and integrin expression. Anticancer Res 10: 587–598, 1990

    Google Scholar 

  70. FearonER, ChoKR, NigroJM, KernSE, SimonsJW, RuppertJM, HamiltonSR, PreisingerAC, ThomasG, KinzlerKW, VogesteinB: Identification of a chromosome 18q gene that is altered in colorectal cancer. Science 247: 49–56, 1990

    PubMed  Google Scholar 

  71. ChenFA, RepaskyEA, BankertRB: Human lung tumorassociated antigen identified as an extracellular matrix adhesion molecule. J Exp Med 173: 1111–1119, 1991

    PubMed  Google Scholar 

  72. RueggC, PostigoAA, SikorskiEE, ButcherEC, PytelaR, ErleDJ: Role of α4β7/α4βp in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol 117: 179–189, 1992

    PubMed  Google Scholar 

  73. SatohK, NarumiK, IsemuraM, SakaiT, AbeT, MatsushimaK, OkudaK, MotomiyaM: Increased expression of the 67 kd-laminin receptor gene in human small cell lung cancer. Biochem Biophys Res Commun 182: 746–752, 1992

    PubMed  Google Scholar 

  74. BenchmolS, FuksA, JothyS, BeaucheminN, ShirotaK, StannersCP: Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 57: 327–334, 1989

    PubMed  Google Scholar 

  75. KramerRH, VuM, ChengYF, RamosDM: Integrin expression in malignant melanoma. Cancer Metastasis Rev 10: 49–59, 1991

    PubMed  Google Scholar 

  76. ChangYS, ChenYQ, TimarJ, GrossiIM, FitzgeraldLA, DiglioCA, HonnKV: Increased expression of αIIbβ3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability. Int J Cancer 51: 445–45, 1992

    PubMed  Google Scholar 

  77. JohnsonJP: Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev 10: 11–22, 1991

    PubMed  Google Scholar 

  78. JohnsonJP, StadeBG, HolzmannB, SchwableW, RiethmullerG: De novo expression of intercellular adhesion molecules-1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA 86: 641–644, 1989

    PubMed  Google Scholar 

  79. HofmannM, RudyW, ZollerM, TolgC, PontaH, HerrlichP, GunthertU: CD44 splice variants confer metastastic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51: 5292–5297, 1991

    PubMed  Google Scholar 

  80. ElderDE, RodeckU, ThurinJ, CarpilloF, ClarkWH, StewartR, HerlynM: Antigenic profile to tumor progression stages in human melanocytic nevi and melanomas. Cancer Res 49: 5091–5096, 1989

    PubMed  Google Scholar 

  81. FrixenUH, BehrensJ, SachsM, EberleG, VossB, WardaA, LochnerD, BirchmeierW: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185, 1991

    PubMed  Google Scholar 

  82. VleminckxK, VakaekL, MareelM, FiersW, VanRoyF: Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119, 1991

    PubMed  Google Scholar 

  83. WilliamsAF, BarclayAN: The immunoglobulin superfamily — Domains for cell surface recognition. Ann Rev Immunol 6: 381–405, 1988

    Google Scholar 

  84. AlbeldaSM, MuellerWA, BuckCA, NewmanPJ: Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol 114: 105–168, 1991

    Google Scholar 

  85. BirchmeierW, BeherensJ, WeidnerKM, FrixenUH, SchipperJ: Dominant and recessive genes involved in tumor cell invasion. Curr Opinion Cell Biol 3: 832–840, 1991

    PubMed  Google Scholar 

  86. ChanBMC, MatsuuraN, TakadaY, ZetterBR, HemlerME:In vitro andin vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251: 1600–1602, 1991

    PubMed  Google Scholar 

  87. McEverRP: Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 65: 223–228, 1991

    PubMed  Google Scholar 

  88. CeliA, FurieB, FurieBC: PADGEM: an adhesion receptor for leukocytes on stimulated platelets and endothelial cells. Proc Soc Exp Biol Med 198: 703–709, 1991

    PubMed  Google Scholar 

  89. PhillipsML, NudelmanE, GaetaFCA, PerezM, SinghalAK, HakomoriS, PaulsonJC: ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250: 1130–1132, 1990

    PubMed  Google Scholar 

  90. HandaK, NudelmanED, StroudMR, ShiozawaT, HakomoriS. Selectin GMP-140 (CD62, PADGEM) binds to sialosyl-Lea and sialosyl-Lex and sulfate glycans modulate this binding. Biochem Biophys Res Commun 181: 1223–1230, 1991

    PubMed  Google Scholar 

  91. BergEL, RobinsonMK, WarnockRA, ButcherEC: The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol 114: 343–349, 1991

    PubMed  Google Scholar 

  92. BevilacquaMP, PoberJS, MendrickDL, CotranRS, GimbroneMA: Identification of an inducible endothelialleukocyte adhesion molecule. Proc Natl Acad Sci USA 84: 9238–9242, 1987

    PubMed  Google Scholar 

  93. RosenSD: The LEC-CAMs: an emerging family of cell-cell adhesion receptors based upon carbohydrate recognition. Am J Respir Cell Mol Biol 3: 397–402, 1990

    PubMed  Google Scholar 

  94. PickerLJ, KishimotoTK, SmithCW, WarnockRA, ButcherEC: ELAM-1 is an adhesion molecule for skinhoming T cells. Nature (Lond.) 349: 796–799, 1991

    Google Scholar 

  95. GengJG, BevilacquaMP, MooreKL, McIntyreTM, PrescottSM, KimJM, BlissGA, ZimmermanGA, McEverRP: Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343: 757–760, 1990

    PubMed  Google Scholar 

  96. PatelKD, ZimmermanGA, PrescottSM, McEverRP, McIntyreTM: Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol 112: 749–759, 1991

    PubMed  Google Scholar 

  97. HakomoriS: Tumor-associated carbohydrate antigens. Ann Rev Immunol 2: 103–126, 1990

    Google Scholar 

  98. GunthertU, HofmannM, RudyW, ReberS, ZollerM, HaussmannI, MatzkusA, WenzelA, PontaH, HerrlichP: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24, 1991

    PubMed  Google Scholar 

  99. MechamRP: Receptor for laminin on mammalian cells. FASEB J 5: 2538–2546, 1991

    PubMed  Google Scholar 

  100. PhillipsDR, CharoIE, ScarboroughRM: GpIIb-IIIa: the responsive integrin. Cell 65: 359–362, 1991

    PubMed  Google Scholar 

  101. DuXP, PlowEF, FrelingerAL, O'TooleTE, LoftusJC, GinsbergMH: Ligands ‘activate’ integrin αIIbβ3 (platelet GpIIb-IIIa). Cell 65: 409–416, 1991

    PubMed  Google Scholar 

  102. ShimizuY, vanSeventer, HorganG, ShawS: Regulated expression and binding of three VLA (β/1) integrin receptors on T cells. Nature 345: 250–253, 1990

    PubMed  Google Scholar 

  103. DetmersPA, LoSK, Olsen-EgbertE, WalzA, BaggioliniM, CohnZA: Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 171: 1155–1162, 1990

    PubMed  Google Scholar 

  104. ChangYS, ChenYQ, FitzgeraldLA, HonnKV: Analysis of integrin mRNA in human and rodent tumor cells. Biochem Biophys Res Commun 176: 108–113, 1991

    PubMed  Google Scholar 

  105. LanguinoLR, RuoslahtiE: An alternative form of the integrin β1 subunit with a variant cytoplasmic domain. J Biol Chem 267: 7116–7120, 1992

    PubMed  Google Scholar 

  106. HeinoJ, MassagueJ: Transforming growth factor-β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem 264: 21806–21811, 1989

    PubMed  Google Scholar 

  107. BurrowsFJ, HaskardDU, HartIR, MarshallJF, SelkirkS, PooleS, ThorpePE: Influence of tumor-derived interleukin-1 on melanoma-endothelial cell interactionsin vitro. Cancer Res 51: 4768–4775, 1991

    PubMed  Google Scholar 

  108. DefilippiP, TruffaG, StefanutoG, AltrudaF, SilengoL, TaroneG: Tumor necrosis factor α and interferon γ modulate the expression of the vitronectin receptor (integrin β3) in human endothelial cells. J Biol Chem 266: 7638–7645, 1991

    PubMed  Google Scholar 

  109. GrossiIM, FitzgeraldLA, UmbargerLA, NelsonKK, DiglioCA, TaylorJD, HonnKV: Bidirectional control of membrane expression and/or activation of the tumor cell IRGpIIb/IIIa receptor and tumor cell adhesion by lipoxygenase products of arachidonic and linoleic acid. Cancer Res 49: 1029–1037, 1989

    PubMed  Google Scholar 

  110. BuchananMP, BertromeuMC, BastidaE, OrrFW, GalloS: Eicosanoid metabolism and tumor cell endothelial cell adhesion. In: HonnKV, MarnettLJ, NigamS, WaldenT (eds) Eicosanoids and other Bioactive Lipids in Cancer and Radiation Injury, Kluwer Academic Publishers, Boston, 1991, pp 347–350

    Google Scholar 

  111. JonesCL, HonnKV: Enhanced membrane expression of adhesin αIIbβ3 in Lewis lung carcinoma cells by epoxyeicosatetraenoic acids. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Biactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 671–678

    Google Scholar 

  112. RossinoP, DefilippiR, SilengoL, TaroneG: Up-regulation of the integrin α1/β1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth responses to laminin. Cell Regulaton 2: 1021–1033, 1991

    Google Scholar 

  113. TimarJ, ChopraH, RongX, HatfieldJS, FligielSEG, OnodaJM, TaylorJD, HonnKV: Calcium channel blocker treatment of tumor cells induces alterations in the cytoskeleton, mobility of integrin αIIbβ3 and tumor cell induced platelet aggregation. J Cancer Res Clin Oncol 118: 425–434, 1992

    PubMed  Google Scholar 

  114. ConfortiG, ZanettiA, Pasquali-RonchettiI, QuaglinoDJr, NeyrozP, DejanaE: Modulation of vitronectin receptor binding by membrane lipid composition. J Biol Chem 265: 4011–4019, 1990

    PubMed  Google Scholar 

  115. Hermanowski-VosatkaA, VanStripJAG, SwiggardWJ, WrightSD: Integrin modulating factor-1: a lipid that alters the function of leukocyte integrins. Cell 68: 341–352, 1992

    PubMed  Google Scholar 

  116. EggensI, FendersonBA, ToyokuniT, DeanB, StroudMR, HakomoriS: Specific interaction between Lex and Lex determinants: a possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem 264: 9476–9484, 1989

    PubMed  Google Scholar 

  117. HakomoriS: New directions in cancer therapy based on aberrant expression of glycosphingolipids: anti-adhesion and ortho-signaling therapy. Cancer Cells 3: 461–470, 1991

    PubMed  Google Scholar 

  118. GawazMP, LoftusJC, BajtML, FrojmovicMM, PlowEF, GinsbergMH: Ligand bridging mediate integrin αI-Ibβ3 (platelet GpIIB-IIIa)-dependent homotypic and heterotypic cell-cell interactions. J Clin Invest 88: 1128–1134, 1991

    PubMed  Google Scholar 

  119. ZimmermanGA, McIntyreTM, MehraM, PrescottSM: Endothelial cell-assciated platelet factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol 110: 529–540, 1990

    PubMed  Google Scholar 

  120. NetlandPA, ZetterBR: Organ specific adhesion of metastatic tumor cellsin vitro. Science 224: 1113–1115, 1984

    PubMed  Google Scholar 

  121. AlbyL, AuerbachR: Differential adhesion of tumor cells to capillary endothelial cellsin vitro. Proc Natl Acad Sci USA 81: 5739–5743, 1984

    PubMed  Google Scholar 

  122. AuerbachR, LuWC, PardonE, GumkowskiF, KaminskaG, KaminskaM: Specificity of adhesion between murine tumor cells and capillary endothelium: anin vitro correlate of preferential metastasisin vivo. Cancer Res 47: 1492–1496, 1987

    PubMed  Google Scholar 

  123. KaminskiM, AuerbachR: Tumor cells are protected from NK cell-mediated lysis by adhesion to endothelial cell. Int J Cancer 4: 847–849, 1988

    Google Scholar 

  124. TangDG, GaoX, ChenY, HonnKV: Tumor cells express PECAM-1-like molecules involved in mediating tumor cell adhesion to endothelium. Proc Am Assoc Cancer Res 33: 33, 1992

    Google Scholar 

  125. RoosE: Adhesion molecules in lymphoma metastasis. Cancer Metastasis Rev 10: 33–48, 1991

    PubMed  Google Scholar 

  126. RoosienFF, DeRijkD, BirkkerA, RoosE: Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1 deficient mutants. J Cell Biol 108: 1979–1985, 1989

    PubMed  Google Scholar 

  127. RiceGE, GimbroneMA, BevilaquaMP: Increased adhesion of human melanoma cells to activated vascular endothelium. Am J Pathol 133: 204–210, 1988

    PubMed  Google Scholar 

  128. RiceCE, BevilacquaMP: An inducible endothelial cell glycoprotein mediates melanoma adhesion. Science 246: 1303–1306, 1989

    PubMed  Google Scholar 

  129. Martin-PaduraI, MortrainiR, LauriD, BernasconiS, Sachez-MadridF, ParmianiG, MantovaniA, AnichiniA, DejanaE: Heterogeneity in human melanoma cell adhesion to cytokine activated endothelium correlates with VLA-4 expression. Cancer Res 51: 2239–2241, 1991

    PubMed  Google Scholar 

  130. Honn KV, Grossi IM, Diglio CA, Laylor JD: Role of 12-lipoxygenase metabolites and integrin glycoprotein receptors in metastasis. In: Etievant C, Cros J, Rustum YM (eds) New Concepts in Cancer: Metastasis, Oncogenes, and Growth Factors. The Macmillan Press Ltd., 1990, pp 42–62

  131. ChopraH, TimarJ, ChenYQ, RongXH, GrossiIM, FitzgeraldLA, TaylorJD, HonnKV: The lipoxygenase metabolite 12(S)-HETE induces cytoskeleton-dependent increase in surface expression of integrin αIIbβ3 on melanoma cells. Int J Cancer 49: 774–786, 1991

    PubMed  Google Scholar 

  132. HonnKV, ChenYQ, TimarJ, HatfieldJS, FligielSEG, SteinertBW, DiglioCA, OnodaJM, GrossiIM, NelsonKK, TaylorJD: αIIbβ3 integrin expression and function in subpopulations of murine tumors. Exp Cell Res 201: 23–32, 1992

    PubMed  Google Scholar 

  133. HonnKV, GrossiIM, ChopraH, SteinertBW, NondaJM, NelsonKK, TaylorJD: Role of tumor cell eicosanoids and membrane glycoprotein IRGpIb and IRGpIIb/IIIa in metastasis. In: NigamS, SlaterMB (eds) Lipid Peroxidation and Cancer. Springer-Verlag, Berlin, Heidelberg, 1988, pp 29–42

    Google Scholar 

  134. ZhuDZ, ChengCF, PauliBU: Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci USA 88: 9568–9572, 1991

    PubMed  Google Scholar 

  135. GillardBK, JonesMA, MarcusDM: Glycosphingolipids of human umbilical vein endothelial cells. Arch Biochem Biophys 256: 435–445, 1987

    PubMed  Google Scholar 

  136. HonnKV, GrossiIM, SteinertBW, ChopraH, NondaJM, NelsonKK, TaylorJD: Lipoxygenase regulation of membrane expression of tumor cell glycoproteins and subsequent metastasis. Adv Prostaglandins Thromboxanes Leukotrienes Res 19: 439–443, 1989

    Google Scholar 

  137. LiuB, TimarJ, HowlettJ, DiglioCA, HonnKV: Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regulation 2: 1045–1055, 1991

    PubMed  Google Scholar 

  138. HonnKV, GrossiIM, DiglioCA, WojtukiewiczM, TaylorJD: Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. FASEB J 3: 2285–2293, 1989

    PubMed  Google Scholar 

  139. ChopraH, TimarJ, RongX, GrossiIM, HatfieldJS, FligielSEG, FinchCA, TaylorJD, HonnKV: Is there a role for the tumor cell integrin αIIbβ3 and cytoskeleton in tumor cell-platelet interaction? Clin Expl Metastasis 10: 125–138, 1992

    Google Scholar 

  140. Honn KV, Grossi IM, Chang YS, Chen YQ: Lipoxygenases, integrin receptors, and metastasis. In: Honn KV, Marnett LJ, Nigam S, Walden T (eds) Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury. Kluwer Academic Publishers, 1991, pp 321–329

  141. HonnKV, GrossiIM, FitzgeraldLA, UmbargerLA, DiglioCA, TaylorJD: Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proc Soc Exp Biol Med 189: 130–135, 1988

    PubMed  Google Scholar 

  142. MarnettLJ, LeithauserMT, RichardsKM, BlairI, HonnKV, YamamotoS, YoshimotoT: Arachdonic acid metabolism of cytosolic fractions of Lewis lung carcinoma. Adv Prostaglandin Thromboxane Leukotriene Res 21: 895–900, 1990

    Google Scholar 

  143. TangDG, DiglioCA, HonnKV: 12(S)-HETE-induced microvascular endothelial cell retraction is mediated by cytoskeletal rearrangement dependent on PKC activation. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 219–229

    Google Scholar 

  144. LiuB, RenaudC, KowyniaJ, NelsonKK, RoudachevskiE, SnyderD, TimarJ, HonnKV: Activation of protein kinase C by 12(S)-HETE: role in tumor cell metastasis. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 629–634

    Google Scholar 

  145. vanWilligenG, AkkermanJ-WN: Protein kinase C and cyclic AMP regulate reversible exposure of binding sites for fibrinogen on the glycoprotein IIB-IIIA complex on human platelet. Biochem J 273: 115–120, 1991

    PubMed  Google Scholar 

  146. LorantDE, PatelKD, McIntyreTM, McEverRP, PrescottSM, ZimmermanGA: Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 115: 223–234, 1991

    PubMed  Google Scholar 

  147. ChenYQ, HonnKV: Eicosanoid regulation of tumor cell-platelet and-endothelium interaction during arrest and extravasation. In: NigamS, HonnKV, MarnettLJ, WaldenT (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury. Kluwer Academic Publishers, Boston, 1992, pp 613–617

    Google Scholar 

  148. Honn KV, Tang DG, Chen YQ: Platelets and cancer metastasis: more than an epiphenomenon. Seminars Thromb Hemost

  149. KojimaN, HakomoriS: Cell adhesion, spereading, and motility of GM3-expressing cells based on glycosphingolipid interactions. J Biol Chem 264: 20159–20162, 1991

    Google Scholar 

  150. HoffSD, MatsushitaY, OtaDM, ClearyKR, YamoriT, HakomoriS, IrimuraT: Increased expression of sialyldimeric Lex antigen in liver metastases of human colorectal carcinoma. Cancer Res 49: 6883–6888, 1989

    PubMed  Google Scholar 

  151. MatsushitaY, HoffSD, NudelmannED, OtakaM, HakomoriS, OtaDM, ClearyKR, IrimuraT: Metastatic behavior and cell surface properties of HT-29 human colon carcinoma variant cells selected for their different expression of sialy dimeric Lex antigen. Clin Expl Metastasis 9: 283–299, 1991

    Google Scholar 

  152. SpringerTA: The distinctive functions of selectins, integrins, and Ig family molecules in regulation of leukocyte interaction with endothelium. J Cell Biochem 16F: 144, 1992

    Google Scholar 

  153. LauriD, NeedhamL, Martin-PaduraI, DejanaE: Tumor cell adhesion to endothelium: endothelial leukocyte adhesion molecule-1 as an inducible adhesive receptor for colon carcinoma cells. JNCI 83: 1321–1324, 1991

    PubMed  Google Scholar 

  154. MajuriML, MattilaP, RenkonenR: Recombinant E-selectin-protein mediates tumor cell adhesion via sialyl-Lea and sialyl-Lex. Biochem Biophys Res Commun 182: 1376–1382, 1992

    PubMed  Google Scholar 

  155. KojimaN, HandaK, NewmanW, HakomoriS: Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem Biophys Res Commun 182: 1288–1295, 1992

    PubMed  Google Scholar 

  156. SchreinerC, BauerJ, MargolisM, JulianoRL: Expression and role integrins in adhesion of human colonic carcinoma cells to extracellular matrix components. Clin Expl Metastasis 2: 163–178, 1991

    Google Scholar 

  157. GiancottiFG, RuoslahtiE: Elevated levels of fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 849–859, 1990

    PubMed  Google Scholar 

  158. Lissitzky JC, Bouzon M, Delori P, Bignon C, Cantau P, Martin PM: The control of cell migration by laminin, and its role in metastasis. In: Etievant C, Cros J, Rustum YM (eds) New Concepts in Cancer: Metastasis, Oncogenes and Growth Factors. MacMillan Press, 1991, pp 74–92

  159. MiyakeM, HakomoriS: A specific cell surface glycoconjugate controlling cell motility: evidence by functional monoclonal antibodies that inhibit cell motility and tumor cell metastasis. Biochem 30: 3328–3334, 1991

    Google Scholar 

  160. LichtnerRB, BelloniPN, NicolsonGL: Differential adhesion of metastatic rat mammary carcinoma cells to organ-derived microvessel endothelial cells and subendothelial matrix. Exp Cell Biol 57: 146–152, 1989

    PubMed  Google Scholar 

  161. HutchinsonR, FligielS, AppleyardJ, VaraniJ, WichaM: Attachment of neuroblastoma cells to extracellular matrix: correlation with metastatic capacity. J Lab Med 113: 561–568, 1989

    Google Scholar 

  162. LiottaLA, StrackeMI, AznavoorianSA, BeckerME, Schiffmann: Tumor cell motility. Seminars Cancer Biol 2: 111–114, 1991

    Google Scholar 

  163. GehlsenK, ArgravesWS, PierschbacherMD, RuoslahtiE: Inhibition ofin vitro tumor cell invasion by Arg-Gly-Asp containing synthetic peptides. J Cell Biol 106: 925–930, 1988

    PubMed  Google Scholar 

  164. SaikiI, MurantaJ, IidaJ, SakuraiT, NishiN, MatsunoK, AzumaI: Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-ILe-Gly-Ser-Arg (YIGSR) sequences. Br J Cancer 60: 722–728, 1989

    PubMed  Google Scholar 

  165. SoszkaT, KnudsenKA, BevigliaL, RossiC, PoggiA, NiewiarowskiS: Inhibition of murine melanoma cell-matrix adhesion and experimental metastasis by albolarin, an RGD-containing peptide isolated from the venom of Trimeresurus albolaris. Exp Cell Res 196: 6–12, 1991

    PubMed  Google Scholar 

  166. LiuB, RenaudC, NelsonKK, ChenY, BazazR, KowyniaJ, TimarJ, DiglioCA, HonnKV: Protein kinase C inhibitor calphostin C reduces B16 amelanotic melanoma cell adhesion to endothelium and lung colonization. Int J Cancer 52: 147–152, 1992

    PubMed  Google Scholar 

  167. HandaKY, IgarashiY, NisarM, HakomoriS: Downregulation of GMP-140 expression on platelets by N,N-dimethyl and N,N,N,-trimethyl derivatives of sphingosine. Biochemistry 30: 11682–11686, 1991

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honn, K.V., Tang, D.G. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metast Rev 11, 353–375 (1992). https://doi.org/10.1007/BF01307187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307187

Key words

Navigation