Skip to main content
Log in

Nondispersive sample arrangement in neutron interferometry

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The visibility of the interference at high order decreases due to the longitudinal coherence length of the beam which is determined by its wavelength spread. Much higher interference orders can be observed if the surfaces of the phase shifting sample is placed parallel to the reflecting planes of the interferometer crystal. In this case the contrast of the interference pattern is determined by the transverse coherence length which is orders of magnitudes larger than the longitudinal coherence length. Moreover the pattern is nearly independent from the wavelength spread of the beam. This feature has been shown by experiments performed at the high flux reactor at Grenoble. This method permits higher intensities and therefore higher accuracies in neutron interferometer measurements. An accuracy of Δ χ/χ =2.2.10−5 has been achieved for the phase shift of a nondispersively cut Bismuth sample whose coherent scattering length has been determined asb c =8.521(4) fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Born, M., Wolf, E.: Principles of optics. 5th Edn. Oxford: Pergamon Press 1975

    Google Scholar 

  2. Rauch, H.: In: Neutron interferometry. Bonse, U., Rauch, H. (eds.), p. 161. Oxford: Clarendon Press 1979

    Google Scholar 

  3. Kaiser, H., Werner, S.A., George, E.A.: Phys. Rev. Lett.50, 560 (1983)

    Google Scholar 

  4. Rauch, H., Suda, M.: Phys. Status Solidi (a)25, 495 (1974)

    Google Scholar 

  5. Rauch, H., Petrascheck, D.: In: Neutron diffraction. In: Topics in Current Physics, Dachs, H. (ed.) Vol. 6 p. 303. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  6. Sears, V.F.: Can. J. Phys.56, 1261 (1978)

    Google Scholar 

  7. Petrascheck, D.: Phys. Rev. B35, 6549 (1987)

    Google Scholar 

  8. Bonse, U., te Kaat, E.: Z. Phys.243, 14 (1971)

    Google Scholar 

  9. Petrascheck, D.: In: Neutron interferometry, Bonse, U., Rauch, H. (eds.) p. 108. Oxford: Clarendon Press 1979

    Google Scholar 

  10. Lax, M.: Phys. Rev.85, 621 (1952)

    Google Scholar 

  11. Sears, V.F.: Phys. Rep.82, 1 (1982)

    Google Scholar 

  12. Sears, V.F.: Z. Phys. A—Atoms and Nuclei321, 443 (1985)

    Google Scholar 

  13. Bauspiess, W., Bonse, U., Rauch, H.: Nucl. Instrum. Methods157, 157 (1978)

    Google Scholar 

  14. Bonse, U., Kischko, U.: Z. Phys. A—Atoms and Nuclei305, 171 (1982)

    Google Scholar 

  15. Koester, Waschkovski, W., Klüver, A.: Physica B137, 282 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, H., Seidl, E., Tuppinger, D. et al. Nondispersive sample arrangement in neutron interferometry. Z. Physik B - Condensed Matter 69, 313–317 (1987). https://doi.org/10.1007/BF01307290

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307290

Keywords

Navigation