Skip to main content
Log in

Investigation of the low temperature behaviour of the Anderson lattice

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A recently developed new perturbational approach to the nonlocal correlations in the Anderson lattice model is used to study low temperature properties. These include the one particle excitation spectra and possible instabilities towards magnetic or superconducting states. The method rests upon a systematic and in principle exact incorporation of the large interaction energy, the Coulomb repulsionU between local electrons on the same lattice site, into the low energy dynamics of quasiparticles and phonons. The resulting dressing of quasiparticles and their resulting effective interactions are treated in the frame of established approximations: The former in NCA, self-consistently adapted to the lattice (LNCA), and the interacting low energy problem with help of ladder summations for the two-particle scattering. Numerical results for the one particle properties are presented, which show an interesting collective effect in the formation of a Kondo lattice state. Stoner-like expressions for various susceptibilitites are derived. Criteria for the occurrence of magnetic and different superconducting phases are given which clearly exhibit the role of quasiparticle band structure, electron-electron interaction and electronphonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For reviews on experimental aspects of the Heavy Fermion problem see: Stewart, G.R.: Rev. Mod. Phys.56, 755 (1984); Steglich, F.: Paper presented at the 8th Taniguchi Symposium, Kashikojima, Japan, 1985; Ott, H.R.: Progr. Low Temp. Phys. XI: Theoretical aspects are treated in: Lee, R.A., Rice, T.M., Serene, J.W., Sham, L.J., Wilkins, J.W.: Cond. Matter Phys.XII, 99 (1986)

    Google Scholar 

  2. Fulde, P., Keller, J., Zwicknagl, G.: Solid State Phys: (to be published)

  3. Rice, T.M., Ueda, K.: Phys. Rev. B34, 6420 (1986); Fazekas, P.: Solid State Commun.60, 431 (1986); Brandow, P.: Phys. Rev. B33, 215 (1986); Fazekas, P., Brandow, B.H.: (Preprint) (1987)

    Google Scholar 

  4. Yamada, K., Okada, K., Yosida, K., Hanzawa, K.: Progr. Theor. Phys.77, 1097 (1987); Zlatic, V., Ghatak, S.K., Bennemann, K.H.: (Preprint) (1987)

    Google Scholar 

  5. Keiter, H., Morandi, G.: Phys. Rep.109, 227 (1984)

    Google Scholar 

  6. Keiter, H., Kimball, H.C.: Int. J. Magn.1, 233 (1971)

    Google Scholar 

  7. Grewe, N., Keiter, H.: Phys. Rev. B24, 4420 (1981)

    Google Scholar 

  8. Grewe, N.: In: Valence instabilities. Wachter, P., Boppart, H.P. (eds), pp. 21–28: Amsterdam: North-Holland 1982; Grewe, N.: Solid State Commun.50, 19 (1984)

    Google Scholar 

  9. Lee, T.K.: J. Phys. C18, L31 (1985); Zhang, F.C., Lee, T.K., Su, Z.B.: Phys. Rev. B35, 4728 (1987)

    Google Scholar 

  10. Grewe, N., Pruschke, T.: Z. Phys. B — Condensed Matter60, 311 (1985)

    Google Scholar 

  11. Kuramoto, Y.: In: Theory of heavy fermions and valence fluctuation. Kasuka, T., Saso, T. (eds.), pp. 152–161. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  12. Kim, C.I., Kuramoto, Y., Kasuya, T.: Solid State Commun.62, 627 (1987)

    Google Scholar 

  13. Grewe, N.: Z. Phys. B — Condensed Matter67, 323 (1987)

    Google Scholar 

  14. For a more extensive discussion of this energy contribution with inclusion of the charge fluctuation aspect, too,see [7]

    Google Scholar 

  15. For the detailed inclusion of variables see[12], (4.2)

    Google Scholar 

  16. In [12] the exchange term has erroneously been given an extra cumulant subtraction. In fact, the corresponding cumulant correction is already contained in the subtraction given in (3). Care must be taken in a proper choice of the loop variables in (3) for each contribution to the mixed product individually. This modification has no consequences for the following sections of the present paper

    Google Scholar 

  17. Bickers, N.E., Cox, D.L., Wilkins, I.W.: Phys. Rev. B36, 2036 (1987)

    Google Scholar 

  18. In the earlier scheme of [8] a violation of the Fermi liquid property was solely due to a pathology which the NCA produces at the Fermi level. In the Kondo regime this pathology has a very small characteristic width, which is well separated from the energy scale produced by the Kondo effect.See also [18]

    Google Scholar 

  19. Müller-Hartmann, E.: Z. Phys. B — Condensed Matter57, 281 (1984)

    Google Scholar 

  20. Keiter, H., Czycholl, G.: J.M.M.M.31–34, 477 (1983)

    Google Scholar 

  21. Kuramoto, Y.: Z. Phys. B — Condensed Matter53, 37 (1983); Kojima, H., Kuramoto, Y., Tachiki, M.: Z. Phys. B — Condensed Matter54, 293 (1984)

    Google Scholar 

  22. Grewe, N.: Z. Phys. B — Condensed Matter52, 193 (1983); and53, 2711 (1983)

    Google Scholar 

  23. Sticht, J., d'Ambrumenil, N., Kübler, J.: Z. Phys. B — Condensed Matter65, 149 (1986)

    Google Scholar 

  24. Grewe, N.: Paper presented at LT-17, Karlsruhe, 1984

  25. This result agrees with [10] apart from a sign in the denominator which was erroneously printed in [10]

    Google Scholar 

  26. Razafimandimby, H., Fulde, P., Keller, J.: J. Phys. B54, 111 (1984)

    Google Scholar 

  27. Bilz, H., Güntherodt, G., Kleppmann, W., Kress, W.: Phys. Rev. Lett.43, 1998 (1978)

    Google Scholar 

  28. Entel, P., Grewe, N., Sietz, M., Kowalski, K.: Phys. Rev. Lett.43, 2002 (1979)

    Google Scholar 

  29. Grewe, N.: Z. Phys. B — Condensed Matter56, 111 (1984)

    Google Scholar 

  30. Grewe, N., Entel, P., Leder, H.I.: Phys. B — Condensed Matter30, 393 (1978)

    Google Scholar 

  31. Grewe, N., Entel, P.: Z. Phys. B — Condensed Matter33, 331 (1979)

    Google Scholar 

  32. α was calculated in [28] as 94-1

    Google Scholar 

  33. Bringer, A., Lustfeld, H.: Z. Phys. B — Condensed Matter22, 213 (1977); Lustfeld, H., Bringer, A.: Solid State Commun.28, 119 (1978); Ramakrishnan, T.V., Sur, K.: Phys. Rev. B26, 1798 (1982)

    Google Scholar 

  34. Brandow, B.H.: Phys. Rev. B33, 215 (1986)

    Google Scholar 

  35. Bickers, N.E., Cox, D.L., Wilkins, J.W.: Phys. Rev. B36, 2036 (1987); Bickers, N.E.: (Preprint) (1987)

    Google Scholar 

  36. Pruschke, T., Grewe, N.: (to be published)

  37. Keiter, H.: Z. Phys. B — Condensed Matter60, 337 (1985)

    Google Scholar 

  38. Keiter, H., Grewe, N.: (to be published)

  39. Rainer, D.: (Preprint) (1985); Allan, R.B. Mitrovic, B.: Solid State Phys.37, 1 (1982)

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was performed within the research program of SFB 252 “Elektronisch hochkorrelierte metallische Materialien”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewe, N., Pruschke, T. & Keiter, H. Investigation of the low temperature behaviour of the Anderson lattice. Z. Physik B - Condensed Matter 71, 75–94 (1988). https://doi.org/10.1007/BF01310847

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01310847

Keywords

Navigation