Skip to main content
Log in

Interplay of exciton or electron transfer and relaxation

Time-convolutionless generalized master equations

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A trick permitting to apply generalized master equation (GME) theory together with canonical transformation but quantities of interest (single-particle density matrix) remaining untransformed is applied to the time-convolutionless GME approach for carriers interacting with phonons by a local linear coupling. In contrast with time convolution theories (Mori, time-convolution GME), it is found that the second-order perturbational approach in the above coupling is already able to yield a loss of coherence of carrier propagation with increasing time as well as a proper asymptotic state at any temperature. Moreover, dependence on the degree of the initial polaron cloud formation is shown, as expected but again in contrast with the above theories, to disappear explicitly after a short period of the polaron cloud reconstruction from equations determining the time development of the single-particle density matrix. A prediction on the Weber effect and charge-carrier generation process in narrow band materials is given. Correspondence with a recent generalization of the Haken-Strobl-Reineker model is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Čápek, V.: Czech. J. Phys. B (in press)

  2. Čápek, V.: (to be published)

  3. Lindenberg, K., West, B.J.: The nonequilibrium statistical mechanics of open and closed systems. New York, Weinheim, Cambridge: VCH 1990

    Google Scholar 

  4. Čápek, V.: Chem. Phys. (in press)

  5. Förster, T.: Ann. Phys. (Leipzig) (b)2, 55 (1948)

    Google Scholar 

  6. Dexter, D.L.: J. Chem. Phys.21, 836 (1953)

    Google Scholar 

  7. Trlifaj, M.: Czech. J. Phys.8, 510 (1958)

    Google Scholar 

  8. Fowler, W.B., Dexter, D.L.: Phys. Rev.128, 2154 (1962)

    Google Scholar 

  9. Dexter, D.L., Fowler, W.B.: J. Chem. Phys.47, 1379 (1967)

    Google Scholar 

  10. Dexter, D.L.: Phys. Status Solidi B51, 571 (1972)

    Google Scholar 

  11. Tekhver, I.Yu., Khizhnyakov, V.V.: Zh. Eksp. Teor. Fiz.69, 599 (1975) (English translation Soviet Phys.-JETP42, 305 (1975))

    Google Scholar 

  12. Hizhnyakov, V., Tehver, I.: Phys. Status Solidi39, 67 (1970)

    Google Scholar 

  13. Kenkre, V.M.: Phys. Rev. A16, 766 (1977)

    Google Scholar 

  14. Kenkre, V.M.: In: Exciton dynamics in molecular crystals and aggregates. Springer Tracts in Modern Physics. Vol. 94, Höhler, G. (ed.), p. 1. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  15. Weber, G.: Biochem. J.75, 335 (1960)

    Google Scholar 

  16. Čápek, V.: Phys. Status Solidi B125, 639 (1984)

    Google Scholar 

  17. Fulinski, A.: Phys. Lett. A25, 13 (1967)

    Google Scholar 

  18. Fulinski, A., Kramarczyk, W.J.: Physica39, 575 (1968)

    Google Scholar 

  19. Gzyl, H.: J. Stat. Phys.26, 679 (1981)

    Google Scholar 

  20. Hashitsume, N., Shibata, F., Shingu, M.: J. Stat. Phys.17, 155 (1977)

    Google Scholar 

  21. Shibata, F., Takahashi, Y., Hashitsume, N.: J. Stat. Phys.17, 171 (1977)

    Google Scholar 

  22. Tokuyama, M., Mori, H.: Prog. Theor. Phys.55, 411 (1976)

    Google Scholar 

  23. Čápek, V.: Czech. J. Phys. B42, 317 (1992)

    Google Scholar 

  24. Zwanzig, R.: Physica30, 1109 (1964)

    Google Scholar 

  25. Mori, H.: Progr. Theor. Phys.33, 423 (1965)

    Google Scholar 

  26. Haken, H., Strobl, G.: In: The triplet state. Proc. Intern. Symp. Amer. Univ. Beirut 1967. Zahlan, A.B. (ed.), p. 311. cambridge: Cambridge University Press 1967

    Google Scholar 

  27. Reineker, P.: In: Exciton dynamics in molecular crystals and aggregates. Springer Tracts in Modern Physics. Vol. 94, Höhler, G. (ed.), p. 111. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  28. Köngeter, A., Wagner, M.: J. Chem. Phys.92, 4003 (1990)

    Google Scholar 

  29. Silinsh, E.A., Shlihta, G.A., Jurgis, A.J.: Chem. Phys.138, 347 (1986)

    Google Scholar 

  30. Silinsh, E.A., Shlihta, G.A., Jurgis, A.J.: Chem. Phys.155, 389 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čápek, V. Interplay of exciton or electron transfer and relaxation. Z. Physik B - Condensed Matter 92, 523–531 (1993). https://doi.org/10.1007/BF01320516

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320516

PACS

Navigation