Skip to main content
Log in

Order parameter description of the Anderson-Mott transition

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

An order parameter description of the Anderson-Mott transition (AMT) is given. We first derive an order parameter field theory for the AMT, and then present a mean-field solution. It is shown that the mean-field critical exponents are exact above the upper critical dimension. Renormalization group methods are then used to show that a random-field like term is generate under renormalization. This leads to similarities between the AMT and random-field magnets, and to an upper critical dimensiond +c =6 for the AMT. Ford<6, and ε=6−d expansion is used to calculate the critical exponents. To first order in ε they are found to coincide with the exponents for the random-field Ising model. We then discuss a general scaling theory for the AMT. Some well established scaling relations such as Wegner's scaling law, are found to be modified due to random-field effects. New experiments are proposed to test for random-field aspects of the AMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mott, N.F. Metal-insulator transitions (London: Taylor & Francis 1990)

    Google Scholar 

  2. For a review, see, e.g., Belitz, D., T.R. Kirkpatrick; Rev. Mod. Phys.66, 261 (1984)]

    Google Scholar 

  3. Finkel'stein, A.M.: Zh. Eksp. Teor. Fiz.84, 168 (1983) [Sov. Phys. JETP57, 97 (1983)]

    Google Scholar 

  4. Eegner F.: Z. Phys. B35, 207 (1979)

    Google Scholar 

  5. Finkel'stein, A.M.: Zh. Eksp. Teor. Fiz86, 367 (1984) [Sov. Phys. JETP59, 212 (1984)]

    Google Scholar 

  6. Castellani, C., C. DiCastro, P.A. Lee, M. Ma: Phys. Rev. B30, 572 (1984)

    Google Scholar 

  7. For a recent review, see, D. Vollhardt: in: Correlated electron systems. V. Emery (ed.) Singapore World Scientific 1993

  8. See, e.g., S.-K. Ma, Modern theory of critical phenomena. Reading, Mass: Behjamin 1976; M.E. Fisher, in: Advanced course on critical phenomena, p. 1. F.W. Hahne, Heidelberg New York: Berlin Springer, 1983

    Google Scholar 

  9. Harris, A.B., Lubensky, T.C.: Phys. Rev. B23, 2640 (1981); see also Marston, J.B., Affleck, I.: Nucl. Phys.B 290 [FS20], 137 (1987)

    Google Scholar 

  10. That this really is the most obvious simple OP can be seen from [9] and from the further development in Sect. II, III

  11. Wegner, F.: Z. Phys. B44, 9 (1981). Wegner proved that the DOS is neither zero not infinity anywhere in the band for a large class of models for noninteracting electrons. This ruled out the theory of [9], and precludes using the DOS as on OP, although nonanalyticities of the DOS within the band are still possible

    Google Scholar 

  12. Fyodorov, Y.V., Mirlin, A.D.: Phys. Rev. Lett.67, 2049 (1991)

    Google Scholar 

  13. Kirkpatrick, T.R., Belitz, D.: Phys. Rev. Lett.73, 862 (1994)

    Google Scholar 

  14. kirkpatrick, T.R., Belitz, D.: Phys. Rev. Lett.74, 1178 (1994)

    Google Scholar 

  15. Imry, Y., Ma, S.K.: Phys. Rev. Lett.35, 1399 (1975); for a review see, e.g., Nattermann, T., Villain, J.: Phase transitions11, 5 (1988)

    Google Scholar 

  16. Grinstein, G.: Phys. Rev. Lett.37, 944 (1976)

    Google Scholar 

  17. Wegner, F.: Z. Phys. B25, 327 (1976)

    Google Scholar 

  18. See, e.g.,: J. Zinn-Justin,: Quantum field theory and critical phenomena, Oxford: Clarendon Press 1989

    Google Scholar 

  19. In our actual RG calculations in Sect. IV we ignore the constrainttr Q=0,(2.3b). Our rationale is that keeping additional fluctuations cannot possibly do any harm, and ignoring this constraint is technically easier than enforcing it

  20. This statement holds perturbatively in an ε-expansion aboutd *c =6. As in the corresponding magnetic RF problems, one expects nonperturbative effects to play a major role which is not understood

  21. Alshuler, B.L., Aronov, A.G.: Solid State Commun.30, 115 (1979)

    Google Scholar 

  22. Wilson, K.J., Kogut, J.: Phys. Rep.12, 75 (1974)

    Google Scholar 

  23. Pytte, E. Imry, Y., Mukamel, D.: Phys. Rev. Lett.46, 1173 (1981)

    Google Scholar 

  24. Aharony, A.: Phys. Rev. B18, 3328 (1978)

    Google Scholar 

  25. A more careful statement would be that there isat least one DIV. To first order in ε=6−d there is only one DIV, as the one-loop RG analysis presented in Sect. III shows. However, work on magnetic RF problems suggests that this may change neard=4, see [27] See, e.g.,. We expect the same conclusion to apply to the AMT

    Google Scholar 

  26. For a review, see, P.A. Lee, T.V. Ramakrishnan,: Rev. Mod. Phys.57, 287 (1985)

    Google Scholar 

  27. See, e.g., Fisher, D.S.: Phys. Rev. B31, 7233 (1985)

    Google Scholar 

  28. Kirkpatrick, T.R., Belitz, D.: Phys. Rev. B41, 11082 (1990)

    Google Scholar 

  29. Castellani, C., DiCastro, C., Lee, P.A., Ma, M., Sorella, S., Tabet, E.: Phys. Rev. B33, 6169 (1986)

    Google Scholar 

  30. Bhatt, R.N., Fisher, D.S.: Phys. Rev. Lett.68, 3072 (1992)

    Google Scholar 

  31. Questions concerning the scaling of σ and the background contribution to ϖn/ϖμ could be answered by a direct calculation of σ as a correlation function. Naively, a source term for σ will beQ 2, since σ is related to a two-particle Green function. The mean-field scaling ofQ then suggests [σ]=d−2. Taking into account the DIV, this is consistent with (3.16b) and (5.7d). More work is need to confirm or refute this conjecture.

  32. Aharony, A., Imry, Y., Ma, S.K.: Phys. Rev. Lett.37, 1364 (1976), Parisi, G., Sourlas, N.: Phys. Rev. Lett.43, 744 (1979)

    Google Scholar 

  33. Fisher, D.S.,: Phys. Rev. Lett.56, 416 (1986); J. Villain,: J. Phys. (Paris)46, 1843 (1985)

    Google Scholar 

  34. Kirkpatrick, T.R., Belitz, D.: Phys. Rev. B50, 8272 (1994)

    Google Scholar 

  35. Chayes, J., Chayes, L, Fisher, D.S., Spencer, T.: Phys. Rev. Lett.57, 2999 (1986)

    Google Scholar 

  36. Castellani, C., Kotliar, G., Lee, P.A.: Phys. Rev. Lett.59, 323 (1987), Kirkpatrick, T. R., Belitz, D.: Phys. Rev. B40, 5227 (1989)

    Google Scholar 

  37. Altshuler, B.L., Kravtsov, V.D., Lerner, I.V.: Mesoscopic phenomena in solids. Altshuler, B.L., Lee, P.A., Webb R.A. (eds.) Amsterdam: North Holland 1991

    Google Scholar 

  38. Brézin, E., Wallace, D.J.,: Phys. Rev. B7, 1967 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belitz, D., Kirkpatrick, T.R. Order parameter description of the Anderson-Mott transition. Z. Physik B - Condensed Matter 98, 513–526 (1995). https://doi.org/10.1007/BF01320853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320853

PACS

Navigation