Skip to main content
Log in

Determination of the weight-average molecular weight of polyamide-6 on the basis of melt viscosity

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A theory of a two-point rheometrical method of determination of the weight-average molecular weightM w of polyamide-6 is presented. The method is based on the measurement of the instantaneous values of zero-shear-rate viscosity of the degrading polymer melt, and a formula is derived which enables the calculation of the initial value ofM w (i.e. at zero-residence-time in molten state) of the investigated sample. The experimental verification of the method proves its applicability. The considerations carried out may be regarded as a first step towards developing a theory of an in-line rheometer for a continuous determination ofM w .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a T :

temperature shift factor

A :

constant, Pa · s · (kg/kmol)−3.4

b M :

molecular weight shift factor

b M0 :

initial molecular weight shift factor

B :

activation energy of viscous flow, kJ/mol

[c]:

concentration of so called active agent

\(c_{\dot \gamma } \) :

shear rate shift factor

C :

frequency factor in Arndt-Arrhenius equation, Pa · s

C M :

Arndt-Arrhenius frequency factor in eq. (8), Pa · s

d t :

residence time shift factor

D :

constant in eq. (29), kg/kmol · (Pa · s)−0.294

k :

degradation reaction rate constant, s−1

k 1 :

polycondensation reaction rate constant, s−1

k 2 :

random chain scission rate constant, s−1

K :

Bueche constant, Pa · s (kg/kmol)

K T :

Bueche constant in eq. (9), Pa · s (kg/kmol)−3.4

[M]:

concentration of active end groups of polymer chains

M nt :

instantaneous number-average molecular weight of the polymer, kg/kmol

M wt :

instantaneous weight-average molecular weight of the polymer, kg/kmol

M w0 :

initial weight-average molecular weight of the polymer, kg/kmol

M w :

weight-average molecular weight of polymer melt, kg/kmol

(M w0 )solution :

M w0 determined using solution method by Matthes, kg/kmol

(M w0 )melt :

M w0 determined using “two-point” rheometrical method, kg/kmol

M 1 :

molecular weight of monomeric segment of the polymer chain, kg/kmol

m :

mass of the unit volume of polymer melt, kg

n t :

instantaneous number of polymer chains in the unit volume of polymer melt

N :

exponent in eq. (1)

N t :

instantaneous total number of joints between monomeric segments within alln t polymer chains

P nt :

instantaneous number-average polymerisation grade of the polymer

P wt :

instantaneous weight-average polymerisation grade of the polymer

q :

ratio, defined by eq. (A-19)

R :

gas constant,R = 8.315 J/mol η K

s t :

ratio, defined by eq. (A-5)

t :

residence time in molten state, s

t d :

limiting residence time in molten state, defined by eq. (35), s

T :

temperature, K

α :

frequency factor in eq. (4), s−1

β :

activation energy of the reaction rate constant, kJ/mol

\(\dot \gamma \) :

shear rate, s−1

δ :

relative error of the melt or solution viscosity determination

Δ sol :

relative error of the solution method by Matthes

Δ melt :

relative error of the two-point rheometrical method

η t :

instantaneous viscosity, Pa · s

η 0 :

zero-shear-rate viscosity, Pa · s

η 0t :

instantaneous zero-shear-rate viscosity, Pa · s

η 0,0 :

initial (at zero-residence time) zero-shear-rate viscosity, Pa · s

η 01 :

instantaneous zero-shear-rate viscosity att =t 1 , Pa · s

η 02 :

instantaneous zero-shear-rate viscosity att = t 2 , Pa · s

[η]:

intrinsic viscosity of the polymer

ϑ :

frequency factor in eq. (35), s

Λ t :

instantaneous rheological time constant in eq. (1), s

µ :

Newtonian viscosity, Pa · s

ρ :

density of the polymer melt, kg/m3

References

  1. Kembłowski, Z., J. Torzecki, Polym. Eng. Sci.23, 425 (1982).

    Google Scholar 

  2. Kembłowski, Z., M. Michniewicz, J. Torzecki, in: G. Astarita, G. Marucci, L. Nicolais (eds.), Rheology, Vol. 3: Applications, p. 175, Plenum Press (New York 1980).

    Google Scholar 

  3. Bartenev, G. M., J. Polym. Sci. A-1,8, 3417 (1970).

    Google Scholar 

  4. Matthes, A., J. Pract. Chem.162, 245 (1943).

    Google Scholar 

  5. Lovett, A. J. et al., J. Polym. Sci., Chem. Ed.11, 2031 (1973).

    Google Scholar 

  6. Conley, R. T., R. A. Guadiana, in: R. T. Conley (ed.), Thermal Stability of Polymers, Vol. 1, Chap. 10, M. Dekker, Inc. (New York 1970).

    Google Scholar 

  7. Eirich, F. R., H. F. Mark, Soc. Chem. Ind. Monograph no. 13 (London) 43 (1961).

  8. Goodings, E. P., ibid., p. 211.

  9. Huczkowski, P., J. Kapko, R. Olesiak, Polymer19, 77 (1978).

    Google Scholar 

  10. Rafler, G. et al., Acta Polymerica31, 633 (1981).

    Google Scholar 

  11. Konomi, T., H. Tani, J. Polym. Sci. A-1,8, 1261 (1970).

    Google Scholar 

  12. Buxbaum, L. H., Angew. Chemie80, 225 (1968).

    Google Scholar 

  13. Abbas, K. B., Polymer21, 936 (1981).

    Google Scholar 

  14. Giori, C., B. T. Hayes, J. Polym. Sci. A-1,8, 335 (1970).

    Google Scholar 

  15. Henblein, G., Zum Ablauf Jonischer Polymerisationsreaktionen, Akademie-Verlag (Berlin 1975).

    Google Scholar 

  16. Heikens, D., J. Polym. Sci.22, 65 (1956).

    Google Scholar 

  17. Reimschuessel, H. K., G. J. Dege, J. Polym. Sci. A-1,8, 3265 (1970).

    Google Scholar 

  18. Reimschuessel, H. K., J. Polym. Sci.41, 457 (1959).

    Google Scholar 

  19. Fukumoto, O., J. Polym. Sci.22, 263 (1956).

    Google Scholar 

  20. Sych, G., Ch. Reichel, Faserforsch. Textiltechn.13, 256 (1962).

    Google Scholar 

  21. Pezzin, G., G. B. Gechele, J. Appl. Polym. Sci.8, 2195 (1964).

    Google Scholar 

  22. Tirrell, M. V. et al., Polym. Eng. Sci.15, 386 (1975).

    Google Scholar 

  23. Tuckett, R. F., Trans. Farad. Soc.41, 351 (1945).

    Google Scholar 

  24. Kardas, J. E. et al., Dokl. ANSSR156, 658 (1964).

    Google Scholar 

  25. Schaefgen, J. R., J. Polym. Sci.41, 133 (1959).

    Google Scholar 

  26. Jellinek, H. H. G., J. Polym. Sci.5, 264 (1950).

    Google Scholar 

  27. Boyd, R. H., in: R. T. Conley (ed.), Thermal Stability of Polymers, Vol. 1, Ch. 3, M. Dekker Inc. (New York 1970).

    Google Scholar 

  28. Tobolsky, A. V., A. M. Kotliar, T. C. P. Lee, ibid., Chap. 4.

  29. Casassa, E. F., J. Polym. Sci.4, 405 (1949).

    Google Scholar 

  30. Engelne, M. V., A. B. Pakšver, Chem. Volokna No. 5, 5 (1973).

    Google Scholar 

  31. Marshall, J., A. Todd, Trans. Farad. Soc.49, 67 (1953).

    Google Scholar 

  32. Tomita, K., Polymer14, 50 (1973).

    Google Scholar 

  33. ibidem17, 221 (1976).

  34. Zamorsky, Z., Faserforsch. Textiltechn.14, 271 (1963).

    Google Scholar 

  35. Malkin, A. Ja. et al., Vysokomol. soedin.A, 23, 1328 (1981).

    Google Scholar 

  36. Laun, H. M., Rheol. Acta18, 478 (1979).

    Google Scholar 

  37. Dietrich, K., S. Tolsdorf, G. Reinisch, Faserforsch. Textiltechn.23, 325 (1972).

    Google Scholar 

  38. Schroth, R., P. Beyer, Faserforsch. Textiltechn.16, 552 (1965).

    Google Scholar 

  39. Dumanskij, I. A., L. V. Khajlenko, L. V. Prokopenko, Koll. Zhurnal25, 646 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kembłowski, Z., Torzecki, J. Determination of the weight-average molecular weight of polyamide-6 on the basis of melt viscosity. Rheol Acta 22, 186–196 (1983). https://doi.org/10.1007/BF01332371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332371

Key words

Navigation