Skip to main content
Log in

Dynamic correlation functions in the Brusselator

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The Mori-Zwanzig formalism is applied to analyze the dynamics of the homogeneous (zero-dimensional) Brusselator. A comprehensive description of particle number correlations is given below, near and above the hard instability. The static correlations which must be calculated beforehand, are obtained a) by explicitly solving the master equation (small system size), b) from Monte Carlo simulations (medium system size), c) from a Fokker-Planck-Landau approximation (large system size). The dynamic correlations are characterized by a bare relaxation matrix and a memory kernel. Below the transition the memory effects are small, and the relaxation behaviour can be expressed in terms of second order static correlations. In the limit cycle regime, the bare oscillation period increases with the relative excess of the staticY- over theX-autocorrelations while the decay constant decreases both with the distance from the transition and the system size, indicating the existence of order. The memory effects are generally inversely proportional to the system size. Their main effect for large systems is therefore to modify the decay rate above the transition (the ensemble dephasing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammes, G.G.: Principles of Chemical Kinetics. New York: Academic Press 1968

    Google Scholar 

  2. Eigen, M., deMaeyer, L.: In: Techniques of Chemistry, Weissberger, A., Hammes, G.G. (eds.). New York: Wiley 1973

    Google Scholar 

  3. Zhabotinski, A.M.: Biophysics9, 329 (1964)

    Google Scholar 

  4. Winfree, A.: Sci.American230, 82 (1974)

    Google Scholar 

  5. Hess, B., Goldbeter, A., Lefever, R.: Adv. Chem. Physics38, 363 (1978)

    Google Scholar 

  6. Noyes, R.M., Field, R.J.: Ann. Rev. Phys. Chem.25, 95 (1974)

    Google Scholar 

  7. Schlögl, F.: Z. Physik253, 147 (1972)

    Google Scholar 

  8. Grossmann, S., Schranner, R.: Z. Physik B30, 325 (1978)

    Google Scholar 

  9. Prigogine, I., Lefever, R.: J. Chem. Phys.48, 1695 (1968)

    Google Scholar 

  10. Mashiyama, H., Ito, A., Ohta, T.: Progr. Theor. Phys.54, 1050 (1975)

    Google Scholar 

  11. Kuramoto, Y., Tsuzuki, T.: Progr. Theor. Phys.54, 60 (1975)

    Google Scholar 

  12. van Kampen, N.G.: Adv. Chem. Physics34, 245 (1976)

    Google Scholar 

  13. Zwanzig, R.: In: Lect. Theor. Phys. III, Brittin, W., Dunham, L. (eds.). New York: Wiley 1961 Mori, H.: Progr. Theor. Phys.34, 399 (1965)

    Google Scholar 

  14. Grossmann, S.: Phys. Rev. A17, 1123 (1978)

    Google Scholar 

  15. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. New York: Wiley 1977

    Google Scholar 

  16. McQuarrie, D.: In: Suppl. Rev. Ser. Appl. Prob. London: Methuen 1967

    Google Scholar 

  17. Hopf, E.: Ber. Math. Phys. Ak. Wiss. LeipzigXCIV, 1 (1942)

    Google Scholar 

  18. Gillespie, D.T.: J. Phys. Chem.81, 2340 (1977)

    Google Scholar 

  19. Weidlich, W., Haag, G.: Migration Behaviour⋯ Collective Phenomena (to appear)

  20. Ebeling, W.: Phys. Lett.68 A, 430 (1978)

    Google Scholar 

  21. Tomita, K., Tomita, H.: Progr. Theor. Phys.51, 1731 (1974)

    Google Scholar 

  22. Lax, M.: Rev. Mod. Phys.32, 25 (1960)

    Google Scholar 

  23. Richter, P.H., Procaccia,I., Ross,J.:Adv. Chem. Phys. (to appear)

  24. Hengartner, W., Theodorescu, R.: Einführung in die Monte-Carlo-Methode. München, Wien: C. Hanser Verlag 1978

    Google Scholar 

  25. Feistel, R., Ebeling, W.: Physica93 A, 114 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Ernst Ruch on the occasion of his 60th birthday

Reprint requests to S.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schranner, R., Grossmann, S. & Richter, P.H. Dynamic correlation functions in the Brusselator. Z Physik B 35, 363–381 (1979). https://doi.org/10.1007/BF01332698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332698

Keywords

Navigation