Skip to main content
Log in

Wet chemical etching of silicate glasses in hydrofluoric acid based solutions

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The etching of silicate glasses in aqueous hydrofluoric acid solutions is applied in many technological fields. In this review most of the aspects of the wet chemical etching process of silicate glasses are discussed. The mechanism of the dissolution reaction is governed by the adsorption of the two reactive species: HF and HF -2 and the catalytic action of H+ ions, resulting in the breakage of the siloxane bonds in the silicate network. The etch rate is determined by the composition of the etchant as well as by the glass, although the mechanism of dissolution is not influenced. In the second part of this review, diverse applications of etching glass objects in technology are described. Etching of SiO2 and doped SiO2 thin films, studied extensively for integrated circuit technology, is discussed separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. “Gmelin Handbuch der Anorganischen Chemie, Silicium”, 8th Edn, Vol. B (Verlag Chemie, Weinheim, Germany, 1959) p. 566.

  2. A. B. BURG, in “Fluorine chemistry”, Vol. I, edited by J. H. Simons (Academic Press, New York, USA, 1950) p. 180.

    Google Scholar 

  3. H. H. BROENE and T. DE VRIES,J. Amer. Chem. Soc. 69 (1947) 1644.

    Article  Google Scholar 

  4. “Gmelin Handbuch der Anorganischen Chemie, Fluor”, Supplement Vol. 3 (Springer Verlag, Berlin, Germany, 1982) p. 253.

  5. R. P. BELL, K. N. BASCOMBE and J. C. McCOUBREY,J. Chem. Soc. (1956) 1286.

  6. J. S. JUDGE,J. Electrochem. Soc. 118 (1971) 1772.

    Google Scholar 

  7. S. T. TSO and J. A. PASK,J. Amer. Ceram. Soc. 65 (1982) 360.

    Google Scholar 

  8. D.-T. LIANG and D. W. READEY,ibid. 70 (1987) 570.

    Google Scholar 

  9. H. H. BORN and M. PRIGOGINE,J. Chim. Phys. 76 (1979) 538.

    Google Scholar 

  10. M. PRIGOGINE and J. J. FRIPIAT,ibid. 76 (1979) 26.

    Google Scholar 

  11. M. PROKOPOWICZ-PRIGOGINE,Glastech. Ber. 62 (1989) 249.

    Google Scholar 

  12. W. E. KLINE and H. S. FOGLER,Ind. Eng. Chem. Fundam. 20 (1981) 155.

    Google Scholar 

  13. Idem., J. Colloid Interface Sci. 82 (1981) 93 and 103.

    Google Scholar 

  14. G. A. C. M. SPIERINGS and J. VANDIJK,J. Mater. Sci. 22 (1987) 1869.

    Google Scholar 

  15. H. KIKUYAMA, N. MIKI, K. SAKA, J. TAKANO, I. KAWANABE, M. MIYASHITA and T. OHMI,IEEE Trans. Semiconductor Mfg. 4 (1991) 26.

    Google Scholar 

  16. H. KIKUYAMA, M. WAKI, I. KAWANABE, M. MIYASHITA, T. YABUNE, N. MIKI, J. TAKANO and T. OHMIJ. Electrochem. Soc. 139 (1992) 2239.

    Google Scholar 

  17. H. PROKSCHE, G. NAGORSEN and D. ROSS,ibid. 139 (1992) 521.

    Google Scholar 

  18. E. F. VORONIN,Zh. Prikl. Spektrosk. 42 (1985) 954.

    Google Scholar 

  19. Z. BOKSAY and G. BOUQUET,Phys. Chem. Glasses 21 (1980) 110.

    Google Scholar 

  20. W. G. PALMER,J. Chem. Soc. (1930) 1656.

  21. G. A. C. M. SPIERINGS,J. Mater. Sci. 26 (1991) 3329.

    Google Scholar 

  22. J. K. VONDELING,ibid. 18 (1983) 304.

    Google Scholar 

  23. H. S. FOGLER, K. LUND and C. C. McCUNE,Chem. Engng. Sci. 30 (1975) 1325.

    Google Scholar 

  24. A. A. BLUMBERG and S. C. STAVRINOU,J. Phys. Chem. 64 (1960) 1438.

    Google Scholar 

  25. A. H. EL-HOSHY,J. Electrochem. Soc. 117 (1970) 1583.

    Google Scholar 

  26. A. TAKAMATSU, M. SHIBATA, H. SAKAI and T. YOSHIMI,ibid. 131 (1984) 1865.

    Google Scholar 

  27. F. N. SCHWETTMANN, R. J. DEXTER and D. F. COLE,ibid. 120 (1973) 1566.

    Google Scholar 

  28. R. O. SCHWENKER,ibid. 118 (1971) 313.

    Google Scholar 

  29. J. M. ELDRIDGE and P. BALK,Trans. Metall. Soc. AIME 242 (1968) 539.

    Google Scholar 

  30. W. KERN and G. L. SCHNÄBLE,RCA Rev. 43 (1982) 423.

    Google Scholar 

  31. A. C. ADAMS, C. D. CAPIO, S. E. HASZKO, G. I. PARISI, E. I. POVILONIS and McD. ROBINSON,J. Electrochem. Soc. 126 (1979) 313.

    Google Scholar 

  32. C. C. MAI and J. C. LOONEY,SCP Solid State Technol. 66 (1966) No. l p. 19.

    Google Scholar 

  33. A. S. TENNEY and M. GHEZZO,J. Electrochem. Soc. 120 (1973) 1091.

    Google Scholar 

  34. W. KERN and R. C. HEIM,ibid. 117 (1970) 568.

    Google Scholar 

  35. W. KERN,RCA. Rev. 29 (1968) 557.

    Google Scholar 

  36. P. N. HOMER and B. J. CRAWFORD,Glass Technol. 11 (1970) 10.

    Google Scholar 

  37. B. PROCTÖR,Phys. Chem. Glasses 3 (1962) 7.

    Google Scholar 

  38. M. A. KOZLOVA and P. A. SHKONDA,Fiz. Khim. Stekla 13 (1987) 247.

    Google Scholar 

  39. V. HARRAP, in “Semiconductor Silicon 1973”, edited by H. R. Huff and R. R. Burgess (Electrochemical Society, Princeton, NJ, USA, 1973) p. 354.

    Google Scholar 

  40. H. KIKUYAMA and N. MIKI, in Proceedings of the 9th International Symposium on Contamination Control, Los Angeles, CA, USA, (Institute of Environmental Sciences, Mount Prospect, IL, USA, 1988), p. 378.

    Google Scholar 

  41. R. HERRING and J. B. PRICE,Electrochem. Soc. Extended Abstr. 73–2 (1973) 410.

    Google Scholar 

  42. E. H. SNOW and B. E. DEAL,J. Electrochem. Soc. 113 (1966) 263.

    Google Scholar 

  43. N. ENDO and S. MATSUI,Jpn. J. Appl. Phys. 22 (1983) L109.

    Google Scholar 

  44. K. VANHEUSDEN and A. STESMANS,J. Appl. Phys. 69 (1991) 6656.

    Google Scholar 

  45. V. K. LEKO and L. A. KOMAROVA,Steklo Keram. (1973) (11), 15.

  46. M.-T. LEE,J. Amer. Ceram. Soc. 67 (1984) C21.

    Google Scholar 

  47. S. HOPLAND,Mater. Res. Bull. 20 (1985) 1367.

    Google Scholar 

  48. J. LAWRENCE,Electrochem. Soc. Extended Abstr. 72–2 (1972), 466.

    Google Scholar 

  49. A. R. TIMOKHIN and L. A. KOMAROVA,Steklo Keram. (1985) (6), 13.

  50. L. HONIGMANN,Glastech. Ber. 10 (1932) 154.

    Google Scholar 

  51. D. M. BROWN, M. GARFINKEL, M. GHEZZO, E. A. TAFT, A. TENNEY and J. WONG,J. Crystal Growth 17 (1972) 276.

    Google Scholar 

  52. C. PAVELESCU and C. COBIANU,Thin Solid Films 196 (1991) 351.

    Google Scholar 

  53. M. GHEZZO and D. M. BROWN,J. Electrochem. Soc. 120 (1973) 110.

    Google Scholar 

  54. D. M. BROWN and P. R. KENNICOTT,J. Electrochem. Soc. 118 (1971) 293.

    Google Scholar 

  55. S. ROJAS, R. GOMARASCA, L. ZANOTTI, A. BORGHESI, A. SASSELLA, G. OTTAVIANI, L. MORO and P. LAZZERI,J. Vacuum Sci. Technol. B10 (1992) 633.

    Google Scholar 

  56. I. AVIGAL,Solid State Technol. (1983) (10), 217.

  57. J. MITTENBACHER, E. SENNEWALD and B. WIEDEMANN,Wiss. Z. Fr. Schiller Univ. Jena 32 (1983) 71.

    Google Scholar 

  58. Z. BOKSAY and G. BOUQUET,Phys. Chem. Glasses 16 (1975) 81.

    Google Scholar 

  59. L. G. BAIKOVA, V. P. PUKH and T. I. PESINA,Fiz. Khim. Stekla 9 (1983) 654.

    Google Scholar 

  60. V. A. BERSHTEIN, V. P. ALEKHIN, A. P. TERNOVSKII, V. A. STEPANOV and M. Kh. SHORSHOROV,Neorg. Mater. 10 (1974) 1858.

    Google Scholar 

  61. M. J. RAND and J. F. ROBERTS,J. Electrochem. Soc. 120 (1973) 446.

    Google Scholar 

  62. D. M. BROWN, P. V. GRAY, F. K. HEUMANN, H. R. PHILIPP and E. A. TAFT,ibid. 115 (1968) 311.

    Google Scholar 

  63. V. S. MOLCHANOV and L. V. ANDRIANOVA,Sov. J. Opt. Technol. 40 (1973) 696.

    Google Scholar 

  64. Y. HASEGAWA,Glastech. Ber. 36 (1963) 483.

    Google Scholar 

  65. V. A. OSTAF'EV, V. P. MASLOV and A. A. DVORSKII,Sov. J. Opt. Technol. 54 (1987) 432.

    Google Scholar 

  66. M. TOMOZAWA and T. TAKAMORI,J. Amer. Ceram. Soc. 60 (1977) 301.

    Google Scholar 

  67. W. KERN and C. A. DECKERT, in “Thin film processes”, edited by J. L. Vosses and W. Kern (Academic Press, New York, USA, 1978) p. 401.

    Google Scholar 

  68. B. J. JURCIK Jr, J. R. BROCK and I. TRACHTENBERG,J. Electrochem. Soc. 138 (1991) 2141.

    Google Scholar 

  69. A. C. ADAMS, in “VLSI technology”, edited by S. M. Sze (McGraw-Hill, New York, NY, USA, 1983) p. 93.

    Google Scholar 

  70. S. WOLF and R. N. TAUBER, in “Silicon processing for the VLSI era, Vol. 1: Process technology” (Lattice Press, Sunset Beach, CA, USA, 1986) p. 161.

    Google Scholar 

  71. W. KERN and G. L. SCHNABLE, in “The chemistry of the semiconductor industry”, edited by S. J. Moss and A. Ledwith (Blackie, Glasgow, UK, 1987) p. 225.

    Google Scholar 

  72. W. KERN,RCA Rev. 47 (1986) 186.

    Google Scholar 

  73. S. WOLF and R. N. TAUBER, in “Silicon processing for the VLSI era, Vol 1: Process technology” (Lattice Press, Sunset Beach, CA, USA, 1986) p. 198.

    Google Scholar 

  74. W. A. PLISKIN,J. Vacuum Sci. Technol. 14 (1977) 1064.

    Google Scholar 

  75. W. L. WARREN, P. M. LENAHAN, C. J. BRINKER, C. S. ASHLEY, S. T. REED and G. R. SHAFFER,J. Appl. Phys. 69 (1991) 4404.

    Google Scholar 

  76. T. KUBOTA,Jpn. J. Appl. Phys. 11 (1972)1413.

    Google Scholar 

  77. I. L. BARANOV, L. S. STANOVAYA, S. D. STEPANISHCHEV and G. V. LITVINOVICH,Neorg. Mater. 25 (1989) 406.

    Google Scholar 

  78. C. PAVELESCU, C. COBIANU and E. SEGAL,J. Mater. Sci. Lett. 4 (1985) 1280.

    Google Scholar 

  79. P. PAN, L. A. NESBIT, R. W. DOUSE and R. T. GLEASON,J. Electrochem. Soc. 132 (1985) 2012.

    Google Scholar 

  80. R. J. JOYCE, H. F. STERLING and J. H. ALEXANDER,Thin Film Solids 1 (1967/68) 481.

    Google Scholar 

  81. M. VANDENBERG,Electrochem. Soc. Extended Abstr. 79–1 (1979) 262.

    Google Scholar 

  82. C. PAVELESCU, C. COBIANU and L. CONDRIUC,Thin Solid Films 114 (1984) 291.

    Google Scholar 

  83. W. KERN,RCA Rev. 37 (1976) 55.

    Google Scholar 

  84. K. WATANABE, T. TANIGAKI and S. WAKAYAMA,J. Electrochem. Soc. 128 (1981) 2630.

    Google Scholar 

  85. D. E. IBBOTSON, J. J. HSIEH, D. L. FLAMM and J. A. MUCHA,Proc. SPIE 1037 (1989) 130.

    Google Scholar 

  86. S. V. NGUYEN and K. ALBAUGH,J. Electrochem. Soc. 136 (1989) 2835.

    Google Scholar 

  87. Z. I. ALEXIEVA, M. A. TZONEVA and D. A. DICHKOV,Thin Solid Films 140 (1986) 269.

    Google Scholar 

  88. Y. HOMMA and S. TUNEKAWA,J. Electrochem. Soc. 135 (1988) 2557.

    Google Scholar 

  89. W. A. PLISKIN and H. S. LEHMAN,ibid. 112 (1965) 1013.

    Google Scholar 

  90. M. R. BAKLANOV, L. L. VASIL'EVA, F. N. DUL'TSEV, K. P. MOGIL'NIKOV and L. A. NENASHEVA,Proverhknost (1989) (3), 65.

  91. Y. MINOWA, K. YAMANISHI and K. TSUKAMOTO,J. Vacuum. Sci. Technol. B1 (1983) 1148.

    Google Scholar 

  92. C. COBIANU and C. PAVELESCU,J. Mater. Sci. Lett. 3 (1984) 979.

    Google Scholar 

  93. F. GUALANDRIS, G. U. PIGNATEL, S. ROJAS and J. SCANNELL,J. Vacuum Sci. Technol. B3 (1985) 1604.

    Google Scholar 

  94. G. I. PARISI, S. E. HASZKO and G. A. ROZGONYI,J. Electrochem. Soc. 124 (1977) 917.

    Google Scholar 

  95. S. KAL, S. HALDAR and S. K. LAHRI,Microelectron. Reliab. 30 (1990) 719.

    Google Scholar 

  96. J. C. NORTH, T. E. McGAHAN, D. W. RICE and A. C. ADAMS,IEEE Trans. Electron. Devices ED-25 (1978) 809.

    Google Scholar 

  97. W. KERN and D. PUOTINEN,RCA Rev. 31 (1970) 187.

    Google Scholar 

  98. G. GOULD and E. A. IRENE,J. Electrochem. Soc. 134 (1987) 1031.

    Google Scholar 

  99. D. E. CAMPBELL and P. B. ADAMS,J. Testing Evaluation 14 (1986) 260.

    Google Scholar 

  100. ASTM C912-79, in “1985 annual book of ASTM standards, Part.15.02”, (ASTM, Philadelphia, PA, USA, 1985) p. 538.

    Google Scholar 

  101. L. A. ORIVA and A. YA. KUZNETSOV,Sov. J. Opt. Technol. 46 (1979) 696.

    Google Scholar 

  102. C. D. SPENCER and L. OTT,J. Amer. Ceram. Soc. 10 (1927) 402.

    Google Scholar 

  103. M. SAFDAR, R. A. KHAN and M. AKBAR,Pakistan J. Sci. Res. 18 (1966) 17.

    Google Scholar 

  104. A. DIETZEL, A. TIELSCH and L. ERNYEI,Sprechsaal 65 (1932) (5), 27.

    Google Scholar 

  105. W. MASKILL and D. FERGUSON,J. Soc. Glass Technol. 34 (1950) 115N.

    Google Scholar 

  106. G. DELAPIERRE,Sensors Actuators 17 (1989) 123.

    Google Scholar 

  107. W. BENECKE,Microlectron. Engng 11 (1990) 73.

    Google Scholar 

  108. S. D. STOOKEY,Ind. Eng. Chem. 41 (1949) 856.

    Google Scholar 

  109. Idem., ibid. 45 (1953) 115.

    Google Scholar 

  110. T. MATSUURA,Jitsumu HyŌmen Gijutsu 35 (1988) 552.

    Google Scholar 

  111. M. KAWACHI, T. E. EDAHIRO and H. TOBA,Electron. Lett. 18 (1982) 71.

    Google Scholar 

  112. A. KOTSAS, H. GHAFOURI-SHIRAZ and T. S. M. MACLEAN,Opt. Quantum Electron. 23 (1991) 367.

    Google Scholar 

  113. G. EISENSTEIN and D. VITELLO,Appl. Opt. 21 (1982) 3470.

    Google Scholar 

  114. D. R. TURNER, US Patent 4 469 554 (1984).

  115. K. M. TAKAHASHI,J. Colloid Interface Sci. 134 (1990) 180.

    Google Scholar 

  116. S. HOPLAND,Electron. Lett. 14 (1978) 757.

    Google Scholar 

  117. G. VOIRIN, B. SCHEJA and O. PARRIAUX,Proc. SPIE 1128 (1989) 140.

    Google Scholar 

  118. See, for instance, Japanese Patent 90/171 637, German Patents 4 141 203, 3 414 792 and US Patent 4 915 718.

  119. L.-S. FAN, Y.-C. TAI and R.S. MULLER, in Proceedings of the International Electron Devices Meeting, San Fransisco CA, USA (IEEE, New York, NY, USA, 1988) p. 666.

    Google Scholar 

  120. K. S. J. PISTER, H. W. JUDY, S. R. BURGETT and R. S. FEARING,Sensors Actuators A33 (1992) 249.

    Google Scholar 

  121. R. S. MULLER, in Proceedings IEEE Microrobots and Teleoperators Workshop, Hyanne, MA, USA (IEEE, New York, NY, USA, 1987).

    Google Scholar 

  122. P. B. PRICE and R. M. WALKER,J. Appl. Phys. 33 (1962) 3400.

    Google Scholar 

  123. S. M. FARID,Nucl. Instrum. Methods 227 (1984) 160.

    Google Scholar 

  124. K. L. GOMBER, J. S. YADAV and A. P. SHARMA,ibid. A234 (1985) 168.

    Google Scholar 

  125. L. GEE, in Proceedings of the 36th Annual Technical Meeting of the Institute of Environmental Sciences, (New Orleans, LA, USA (Institute of Environmental Sciences, Mount Prospect, IL, USA, 1990) p. 69.

    Google Scholar 

  126. J. DAVISON,Solid State Technol. (1992) (7), 510.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spierings, G.A.C.M. Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. J Mater Sci 28, 6261–6273 (1993). https://doi.org/10.1007/BF01352182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01352182

Keywords

Navigation