Skip to main content
Log in

Heat transport in an infinitely long Non-Newtonian liquid bridge due to marangoni convection

Wärmetransport in einer unendlich langen nicht-newtonischen Flüssigkeitsbrücke bezüglich Marangoni-Konvektion

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

An infinitely long liquid bridge, observing a Non-Newtonian flow law (Ostwald-de-Waal and Bingham), is subjected under weightless condition to a linear temperature field, which yields due to the local change of the surface tension a Marangoni convection. The velocity- and temperature distribution inside the liquid bridge is determined analytically.

Zusammenfassung

Eine unendlich lange Flüssigkeitsbrücke, die einem Nicht-Newtonischen Fließgesetz (Ostwald-de-Waal und Bingham) folgt, ist im schwerelosen Raum einem linearen Temperaturfeld ausgesetzt, das in der Flüssigkeitssäule eine Marangoni-Konvektion hervorruft. Es wird die Geschwindigkeits- und Temperaturverteilung in der Flüssigkeitsbrücke analytisch bestimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of liquid column

k :

thermal conductivity

K :

material constant of Ostwald-de-Waal liquid

n :

material constant of Ostwald-de-Waal liquid

p :

liquid pressure

r :

radial coordinate

T :

temperature

¯T1 :

temperature gradient along z-axis

w :

velocity distribution of liquid in axial direction

z :

axial coordinate

x :

diffusivity

σ :

liquid surface tension

τ:

tangential stress

τ0 :

flow shear stress for Bingham plastic

η :

dynamic viscosity of Newtonian liquid(k=η, n=1)

References

  1. Proceedings of the Third Space Processing Symposium, Skylab Results. NASA-Report M. 75.5, Alabama, USA 35812: Marshall Space Flight Center April 30–May 1, 1974

  2. Carruthers, J. R.; Gibson, E. G.; Klett, M. G.; Facemire, B. R.: Studies of Rotating Liquid Floating Zones on Skylab IV. AIAA-Paper No. 25-692, AIAA 10th Thermophysics Conference Denver, Colorado, May 1975

  3. Da-Riva, I.; Ruesga, J. M.: Fluid-Physics-Module Experiments. 2nd Europ. Symp. Mat. Sci. Space. Frascati, Italy 6.–8. April 1976, ESA-SP-114 (Sept. 1976) 265–275

  4. Wuest, W.: Fluid Dynamics of a Floating Zone. Proc. 2nd Europ. Symp. Mat. Sci. Space. Frascati, Italy 6.–8. April 1976, ESA-SP-114 (Sept. 1976) 455–465

  5. Chung, Ch.-H.: Marangoni Convection in a Floating Zone Under Reduced Gravity. J. Cryst. Growth 48 (1980) 600–610

    Google Scholar 

  6. Fowle, A. A.; Haggerty, J. J.; Pepron, R. R.; Strong, P. F.; Swanson, J. L.: Float-Zone Processing in a Weightless Environment. NASA CR-2768, Nov. 1976

  7. Plateau, J. A. F.: Experimental and theoretical Researches on the Figures of Equilibrium of a Liquid Mass Withdrawn from the Action of Gravity. Smithson. Inst. Annu. Rep. (1863) 207–285; (1964) 286–369; (1865) 411–435; (1866) 255–289

  8. Mason, G.: An Experimental Determination of the Stable Length of Cylindrical Liquid Bubbles. J. Colloid Interface Sci. 32 (1970) 172–176

    Google Scholar 

  9. Pearson, J. R. A.: On Convection Cells Induced by Surface Tension. J. Fluid Mech. 4 (1958) 489–500

    Google Scholar 

  10. Scriven, L. E.; Sternling, C. V.: The Marangoni Effects. Nature 187 (1960) 186–188

    Google Scholar 

  11. Scriven, L. E.; Sternling, C. V.: On Cellular Convection Driven by Surface Tension Gradients: Effect of the Mean Surface Tension and Surface Viscosity. J. Fluid Mech. 19 (1964) 321–340

    Google Scholar 

  12. Vidal, A.; Acrivos, A.: The Nature of the Neutral State in Surface-Tension-Driven Convection. Phys. Fluids 9 (1966) 615–616

    Google Scholar 

  13. Chang, C. E.; Wilcox, W. R.: Inhomogeneities Due to Thermocapillary Flow in Floating Zone Melting. J. Crystal Growth 28 (1975) 8–12

    Google Scholar 

  14. Chang, C. E.; Wilcox, W. R.: Analysis of Surface Tension Driven Flow in Floating Zone Melting. Int. J. Heat Mass Transfer 19 (1976) 355–366

    Google Scholar 

  15. Schwabe, D.; Scharmann, A.; Preisser, F.; Oeder, R.: Experiments on Surface Tension Driven Flow in Floating Zone Melting. J. Crystal Growth 43 (1978) 305–312

    Google Scholar 

  16. Carruthers, J. R.; Grasso, M.: Studies of Floading Liquid Zones in Simulated Zero Gravity. J. Appl. Phys. 43 (1972) 436–445

    Google Scholar 

  17. Brice, J. C.: The Kinetics of Growth from Solution. J. Cryst. Growth (1967) 218–224

  18. Da-Riva, I.; Martinez, I.: Floating Zone Stability. Proc. 3rd Europ. Symp. Mat. Sci. Space. Grenoble 24.–27. April 1979, ESA-SP-142 (1979) 67–73

  19. Martinez, I.: Floating Zone Under Reduced Gravity-Axisymmetric Equilibrium Shapes. Proc. 2nd Europ. Symp. Mat. Sci. Space. Frascati, Italy 6.–8. April 1976, ESA-SP-114 (Sept. 1976) 277–282

  20. Matsuhisa, S.; Bird, R. B.: Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Flow. AIChE J. 11 (1965) 588–595

    Google Scholar 

  21. Chen, S. S.; Fan, L. T.; Hwang, C. L.: Flow Calculations for Non-Newtonian Fluids. Br. Chem. Eng. 14 (1969) 25–28

    Google Scholar 

  22. Reber, E. O.; Haroske, D.; Köhler, K.: Strömung nicht-Newtonscher Flüssigkeiten. Chem. Technik 21 (1969) 137–143; 281-284

    Google Scholar 

  23. Haroske, D.; Reber, E. O.: Strömung nicht-Newtonscher Flüssigkeiten. Chem. Technik 22 (1970) 32–36

    Google Scholar 

  24. Kooijman, J. M.; van Zanten, D. C.: The Flow of a Cassonian Fluid Through Parallel-Plate Channels and Through Cylindrical Tubes. Chem. Eng. J. 4 (1972) 185–188

    Google Scholar 

  25. Kooijman, J. M.: The Flow and Mass Transfer in Haemodialysis: The Influence of Non-Newtonian Blood Flow. Chem. Eng. J. 4(1972) 189–196

    Google Scholar 

  26. Davis, H. R.; Parkinson, G. V.: Mass Transfer From Small Capillaries with Wall Resistance in the Laminar Flow Regime. Appl. Sci. Res. 22 (1970) 20–36

    Google Scholar 

  27. Grigull, U.: Wärmeübergang an nicht-Newtonsche Flüssigkeiten bei laminarer Rohrströmung. Chemie-Ing.-Techn. 28 (1956) 552–556

    Google Scholar 

  28. Bauer, H. F.: Velocity Distribution Due to Thermal Marangoni Effect in a Liquid Column Under Zero-Gravity Environment. Forschungsbericht der Hochschule der Bundeswehr LRT-WE-9-FB-5-81 (1981)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, F. Heat transport in an infinitely long Non-Newtonian liquid bridge due to marangoni convection. Wärme- und Stoffübertragung 16, 229–235 (1982). https://doi.org/10.1007/BF01375647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01375647

Keywords

Navigation