Skip to main content
Log in

On the thermodynamics of nonlinear single integral representations for thermoviscoelastic materials with applications to one-dimensional wave propagation

Zur Beschreibung des nichtlinearen Verhaltens thermoviskoelastischer Stoffe durch einfache Integrale mit Anwendung auf eindimensionale Wellenausbreitung

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Thermodynamic theory is used to develop single integral constitutive relations for the nonlinear thermoviscoelastic response to arbitrary stress and temperature histories; the thermomechanically coupled energy equation is also obtained. The thermorheologically simple material, modified superposition and the isotropic stress power law are discussed in detail. A modified Fourier heat conduction law is employed to ensure that the propagation of thermal disturbances takes place at a finite velocity. Using the nonlinear thermoviscoelastic stress power law along with the linearized energy equation and modified Fourier law, one-dimensional wave front solutions are obtained.

Zusammenfassung

Mit Hilfe der Thermodynamik werden einfache Integrale enthaltende Werkstoffbeziehungen für das nichtlineare thermoviskoelastische Verhalten unter beliebigen Spannungs- und Temperaturverläufen entwickelt und die thermomechanisch gekoppelte Energiegleichung wird angegeben. Im Detail werden der thermodynamisch-einfache Werkstoff, die modifizierte Überlagerung und das isotrope Spannungs-Potenzgesetz diskutiert. Damit thermische Störungen sich mit endlicher Geschwindigkeit ausbreiten, wird ein modifiziertes Fouriersches Wärmeleitgesetz verwendet. Unter Verwendung des nichtlinearen thermoviskoelastischen Spannungs-Potenzgesetzes, der linearisierten Energiegleichung und des modifizierten Wärmeleitgesetzes werden Lösungen der eindimensionalen Wellenfrontausbreitung erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C ijkl :

linear elastic compliance, Equation (29)

C s ,C ts ,m s ,m tk ,v s ,v tk :

inelastic material constant, Equation (38)

C ε :

specific heat at constant strain, Equation (57)

C σ :

specific heat at constant stress, Equation (29)

E :

Young's modulus, Equation (34)

F kl :

tensor functions of stress, Equation (28)

f (1) mn ,f (2) kl :

tensor functions of the stress and temperature, Equation (8)

f[σ(t)]:

monotonically increasing function of stress, Equation (1)

G :

Gibbs free energy, Equation (2)

\(\bar G\) :

initial Gibbs free energy, Equation (29)

\(\bar G^E \) :

Gibbs free energy due to the instantaneous elastic response of the material, Equation (7)

\(\bar G^M \) :

Gibbs free energy due to memory, Equation (7)

ĝ i :

temperature gradient\(\left. {\frac{{\partial \Theta }}{{\partial x_i }}} \right|_t (x_i ,\xi )\), Equation (20)

H :

Helmholtz free energy, Equation (2)

J 1 :

first invariant of the stress tensor, Equation (38)

I 1 :

second invariant of the stress deviator tensor, Equation (38)

J(t) :

creep compliance function, Equation (1)

J ijkl (t) :

temperature independent material property, Equation (8)

J s :

steady creep compliance function, Equation (38)

J tk :

transient creep compliance function, Equation (38)

J I :

shear creep compliance function, Equation (34)

J II :

bulk creep compliance function, Equation (34)

K :

isotropic thermal conductivity, Equation (42a)

K ij :

thermal conductivity tensor, Equation (3)

M :

number of nonlinear memory integrals, Equation (36)

N=M+2:

number of components of strain, Equation (49)

n :

steady creep power, Equation (45)

Q :

one-dimensional heat flux vector, Equation (48 b)

Q i :

heat flux vector, Equation (3)

q i :

transient creep powers, Equation (46)

S :

entropy per unit mass, Equation (4)

\(\bar S\) :

initial entropy density, Equation (29)

s ij :

stress deviator tensor

T :

temperature

T 0 :

constant reference temperature, Equation (4)

t :

time

V 1,V 2 :

wave speeds

\(V_e = \sqrt {E/\varrho } \) :

uncoupled elastic mechanical wave speed

\(V_T = \sqrt {K/\varrho C_\sigma \tau } \) :

uncoupled thermal speed

x i :

space coordinate

α:

coefficient of thermal expansion, Equation (34)

α ij :

thermal strain coefficient, Equation (24)

γ, δ:

positive quantities in base characteristics equation, Equation (55)

ε:

one-dimensional strain

ε ij :

strain tensor

ε 1 :

linear elastic strain, Equation (49)

ε 2 :

steady creep strain, Equation (49)

ε 1,i=3,...,N :

transient creep strains, Equation (49)

ε T :

thermal strain, Equation (49)

\(\bar \varepsilon _{ij} \) :

initial strain, Equation (29)

η:

reciprocal of the isotropic conductivity, Equation (41)

Θ :

reciprocal of the conductivity

ϑ:

temperature difference betweenT and a constant reference temperature, Equation (3)

Θ 0 :

initial temperature discontinuity, Equation (73)

λ,µ i :

material constants, Equation (45), (46)

λ 1,λ 2,λ 3 :

functions of the three invariants of the stress tensor, Equation (35)

\(\bar \lambda , \bar \mu \) :

Lamé constants, Equation (57)

A :

rate of energy dissipation, Equation (13)

ν:

elastic Poisson's ratio, Equation (34)

ζ:

reduced time, Equation (17)

ϱ:

mass density, Equation (2)

σ:

one-dimensional stress

σ ij :

stress tensor

τ:

relaxation time of heat conduction, Equation (3)

τ i :

retardation time in transient creep, Equation (39)

ϕ:

shift factor, Equation (37)

[ ] j ,j=1, 2:

indicates a discontinuity across the leading and lagging wave fronts respectively

\(\widehat{( )}\) :

designates dependent variables in (x i , ζ) space

References

  1. Coleman, B. D.: Thermodynamics of Materials with Memory. Arch. Rational Mech. Anal.17, 1–46 (1964).

    Google Scholar 

  2. Christensen, R. M., andP. M. Naghdi: Linear Non-Isothermal Viscoelastic Solids. Acta Mechanica3, 1–12 (1967).

    Google Scholar 

  3. Cost, T. L.: A Free Energy Functional for Thermorheologically Simple Materials. Acta Mechanica17, 153–167 (1973).

    Google Scholar 

  4. Biot, M. A.: Linear Thermodynamics and the Mechanics of Solids. Proc. Third U.S. National Congress Applied Mechanics 1–18 (1958).

  5. Schapery, R. A.: Application of Thermodynamics to Thermomechanical, Fracture, and Birefringent Phenomena in Viscoelastic Media. J. Appl. Phys.35, 1451–1465 (1964).

    Google Scholar 

  6. Day, W. A.: The Thermodynamics of Simple Materials with Fading Memory. New York: Springer. 1972.

    Google Scholar 

  7. Achenbach, J. D., S. M. Vogel andG. Herrmann: On Stress Waves in Viscoelastic Media Conducting Heat. IUTAM-Symp. 1–15 (1966).

  8. Gurtin, M. E., andI. Herrera: On Dissipation Inequalities and Linear Viscoelasticity. Quart. Appl. Math.23, 235–244 (1965).

    Google Scholar 

  9. Boley, B. A., andJ. H. Weiner: Theory of Thermal Stresses. New York: J. Wiley. 1960.

    Google Scholar 

  10. Lubliner, J.: On the Thermodynamic Foundations of Non-Linear Solid Mechanics. Int. J. Non-Linear Mech.7, 237–254 (1972).

    Google Scholar 

  11. Cost, T. L.: Dissipation of Mechanical Energy in Viscoelastic Materials. Bulletin of the 8th Meeting of the JANNAF Working Group on Mechanical Behavior. CPIA Pub. 193, Vol.1, 113 (1969).

    Google Scholar 

  12. Green, A. E., andR. S. Rivlin: The Mechanics of Non-Linear Materials with Memory. Arch. Rat. Mech. Anal.1, 1–21 (1957).

    Google Scholar 

  13. Leaderman, H.: Elastic and Creep Properties of Filamentous Materials and other High Polymers. Washington, D.C.: The Textile Foundation. 1943.

    Google Scholar 

  14. Findley, W. N., andJ. S. Y. Lai: A Modified Superposition Principle Applied to Creep of Nonlinear Viscoelastic Material under Abrupt Changes in State of Combined Stress. Trans. Soc. Rheol.11, 361–380 (1967).

    Google Scholar 

  15. Cozzarelli, F. A., andR. P. Shaw: A Combined Strain and Time-Hardening Non-Linear Creep Law. Int. J. Non-Linear Mech.7, 221–234 (1972).

    Google Scholar 

  16. Distefano, N., andR. Todeschini: Modeling, Identification and Prediction of a Class of Nonlinear Viscoelastic Materials (I). Int. J. Solids Str.9, 805–818 (1973).

    Google Scholar 

  17. Pipkin, A. C., andT. G. Rogers: A Nonlinear Integral Representation for Viscoelastic Behavior. Mech. Phys. Solids16, 59–72 (1968).

    Google Scholar 

  18. Schapery, R. A.: A Theory of Non-Linear Thermoviscoelasticity Based on Irreversible Thermodynamics. Proc. 5th U.S. National Congress of Applied Mechanics (A.S.M.E.) 511–530 (1966).

  19. Schapery, R. A.: On the Characterization of Nonlinear Viscoelastic Materials. Polymer Eng. Sci.9, 295–316 (1969).

    Google Scholar 

  20. Christensen, R. M.: Theory of Viscoelasticity. New York: Academic Press. 1971.

    Google Scholar 

  21. Schapery, R. A.: Further Development of a Thermodynamic Constitutive Theory; Stress Formulation. Purdue Univ. Report AA&ES 69-2, Feb. 1969.

  22. Müller, I.: The Coldness, a Universal Function in Thermoelastic Bodies. Arch. Rat. Mech. Anal.41, 319–332 (1971).

    Google Scholar 

  23. Gurtin, M. E., andA. C. Pipkin: A General Theory of Heat Conduction with Finite Wave Speed. Arch. Rat. Mech. Anal.31, 113–126 (1969).

    Google Scholar 

  24. Chen, P. J.: On Second Sound in Materials with Memory. Z. Angew. Math. Phys.21, 232–241 (1970).

    Google Scholar 

  25. Bogy, D. B., andP. M. Naghdi: On Heat Conduction and Wave Propagation in Rigid Solids. J. Math. Phys.11, 917–923 (1970).

    Google Scholar 

  26. Cattaneo, C.: Sur une Forme de l'équation de la Chaleur Eliminant le Paradoxe d'une Propagation Instantanée. Compt. Rend. Acad. Sci.247, 431–433 (1958).

    Google Scholar 

  27. Vernotte, P.: Les Paradoxes de la Théorie Continue de l'équation de la Chaleur. Compt. Rend. Acad. Sci.246, 3154–3155 (1958).

    Google Scholar 

  28. Kaliski, S.: Wave Equation of Heat Conduction. bull. Acad. Polon. Sci. Ser. Sci. Tech.13, 211–219 (1965).

    Google Scholar 

  29. Kaliski, S.: Wave Equations of Thermoelasticity. Bull. Acad. Polon. Sci. Ser. Sci. Tech.13, 253–260 (1965).

    Google Scholar 

  30. Achenbach, J. D.: The Influence of Heat Conduction on Propagating Stress Jumps. J. Mech. Phys. Solids16, 273–282 (1968).

    Google Scholar 

  31. Lord, H. W., andY. Shulman: A Generalized Dynamical Theory of Thermoelasticity. J. Mech. Phys. Solids15, 299–309 (1967).

    Google Scholar 

  32. Shaw, R. P., andF. A. Cozzarelli: Stress Relaxation at Wave Fronts in One-Dimensional Media Described by Nonlinear Viscoelastic Models. Int. J. Nonlinear Mech.5, 171–182 (1970).

    Google Scholar 

  33. Shaw, R. P., andF. A. Cozzarelli: Wave-Front Stress Relaxation on a One-Dimensional Nonlinear Inelastic Material with Temperature and Position Dependent Properties. J. Appl. Mech.38, 47–50 (1971).

    Google Scholar 

  34. Morland, L. W., andE. H. Lee: Stress Analysis for Linear Viscoelastic Materials with Temperature Variation. Trans. Soc. Rheol.4, 233–263 (1960).

    Google Scholar 

  35. Courtine, D., F. A. Cozzarelli andR. P. Shaw: Effect of Time Dependent Compressibility on Nonlinear Viscoelastic Wave Propagation. To appear in Int. J. Nonlinear Mech.

  36. Cozzarelli, F. A., andW. P. Chang: Wave Front Stress Relaxation in Nonlinear Viscoelastic Materials with Random Temperature Distributions. Acta Mechanica22, 11–30 (1975).

    Google Scholar 

  37. Fung, Y. C.: Foundations of Solid Mechanics. Englewood Cliffs, N.J.: Prentice-Hall, Inc. 1965.

    Google Scholar 

  38. Popov, E. B.: Dynamic Coupled Problem of Thermoelasticity for a Half-Space Taking Account of the Finiteness of the Heat Propagation Velocity. J. Appl. Math. Mech. (PMM)31, 349–356 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the Office of Naval Research under Contract No. N00014-75-C-0302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.P., Cozzarelli, F.A. On the thermodynamics of nonlinear single integral representations for thermoviscoelastic materials with applications to one-dimensional wave propagation. Acta Mechanica 25, 187–206 (1977). https://doi.org/10.1007/BF01376991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01376991

Keywords

Navigation