Skip to main content
Log in

The effect of chain structure on the annealing and deformation behaviour of polymers

  • Original Contributions
  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

In a tensile test ductile thermoplastics may give either uniform deformation or necking. Recently it has been found that those giving uniform deformation either, are known to have extended chain configurations in solution, or have chemical formulae with linear structures and relatively few flexible bonds. The observed differences in behaviour can be predicted from a viscosity retarded rubber elasticity model in which a constant related to chain flexibility is introduced, which quantifies the strain hardening of the material. It is argued that the early development of strain hardening generally interferes with the localization of plastic strain in shear bands or crazes (as well as in a neck) and correlates with the stress cracking performance of high density polythenes.

There is now also some evidence that polymers with extended chain configurations have small values ofΔcp (the change in specific heat atTg) and that this figure has an apparent correlation with draw ratio for different polymers.

In the case of P.V.C. however it is possible to cause a changeover from the normal necking behaviour to uniform deformation by quenching the hot material in ice water. This process is believed to eliminate a structure which develops slowly in P.V.C. and most other thermoplastics when they are annealed at temperatures near toTg. The elimination of this structure during yielding causes strain softening and also promotes plastic strain localisation.

This physical ageing or annealing process is still not well understood. It almost certainly includes free volume effects but recent studies have shown that a redistribution of rotational isomers also occurs. These observation, if correct, have fundamental implications for the physics of glassy polymers.

Zusammenfassung

Beim Zug-Test erfolgt bei dehnbaren Thermoplasten entweder eine gleichmäßige Deformation oder eine Einschnürung. Erstere tritt auf bei Vorliegen ausgestreckter Kettenkonfigurationen in Lösung oder bei Makromolekülen linearer Struktur und relativ unbiegsamer Bindungen. Die beobachteten Unterschiede wurden anhand eines ViskositätsModells mit verminderter Gummi-Elastizität unter Zugrundelegung von Literaturdaten diskutiert. Die Kettensteifheit wird rechnerisch durch Einfügung einer Konstanten berücksichtigt; sie steht in Konkurrenz mit der Lokalisierung der plastischen Dehnung und korreliert mit dem Auftreten einer Spannungsriß-Bildung im Polyäthylen hoher Dichte. Es wird darauf hingewiesen, daß sich die spezifische Wärme von Polymeren mit ausgedehnter Kettenkonfiguration beiTg nur wenig ändert; dieser Effekt steht mit dem Dehnungsverhältnis verschiedener Polymerer in Einklang.

Bei PVC kann jedoch durch Abschrecken des heißen Materials in Eiswasser ein Übergang vom normalen Einschnürungsverhalten zu einer gleichmäßigen Deformation erzielt werden; dieser Effekt ist durch die Unterdrückung einer speziellen Struktur bedingt und kann auch bei der Temperung anderer thermoplastischer Polymerer nahe beiTg auftreten.

Die sich bei der physikalischen Alterung und bei der Temperung abspielenden Vorgänge lassen sich noch nicht erklären. Sie umfassen sicherlich Effekte des freien Volumens und die Rückverteilung von Rotations-Isomeren. Beobachtungen dieser Art sind von grundsätzlicher Bedeutung für die Physik glasartiger Polymerer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCrum, N. G., B. E. Read, G. Williams, An elastic and dielectric Effect in Polymeric Solids, J. Wiley and Sons (London 1967)

    Google Scholar 

  2. Heijboer J., Molecular Basis of Transitions and Relaxations ed. D. J. Meier, Gordon and Breach 1978 Midland Macromolecular Monographs Vol. 4; New York. Akad. Sci.279, 104 (1976).

  3. van Krevelen, D. W., Properties of Polymers, pp. 109–131 Elsevier, (Amsterdam 1972).

    Google Scholar 

  4. Lee, W.A., J. Pol. Sci. A28, 555 (1970).

    Google Scholar 

  5. Rehage, G., The Physics of Glassy Polymers, App. Sci. Publ., Chap. I, ed.R. N. Haward (London 1973).

  6. Bowden, P., The Physics of Glassy Polymers, (ibid) Chap. V.

  7. Robertson, R. E., J. Chem. Phys.64, 3959 (1966).

    Google Scholar 

  8. Argon. A. S., Phil-Mag.28, 839 (1973).

    Google Scholar 

  9. Bauwens-Crowet, C., J. C. Bauwens, J. Macromol. Sci. (Phys) B14, 265 (1977).

    Google Scholar 

  10. Brereton, M. G., R. A. Duckett, S. H. Joseph, P. J. Spence, J. Mech. Phys. Solids25, 127 (1977).

    Google Scholar 

  11. Rabinowitz, S., P. Beardmore, Crit: Rev. Macromol. Sci, Jan. 1972, 1.

  12. Beahan, P., M. Bevis, D. Hull, Phil. Mag.24, 1267 (1971); Proc. Roy. Soc.A343, 525 (1975).

    Google Scholar 

  13. Lainchbury, D. L. G., M. Bevis, J. Mat. Sci.11, 2222 (1976).

    Google Scholar 

  14. Lauterwasser, B. D., E. J. Kramer, Phil. Mag.A39, 367 (1979).

    Google Scholar 

  15. Wellinghoff, S. T., E. Baer, J. Macromol. Sci. Phys.B 11, 367 (1975).

    Google Scholar 

  16. Argon, A. S., J. G. Hannoosh, Phil. Mag.36 1195 (1977).

    Google Scholar 

  17. Argon. A. S., M. M. Salama, Phil. Mag.36, 1217 (1977).

    Google Scholar 

  18. Vincent, P. I., Polymer1, 7 (1960).

    Google Scholar 

  19. Thackray, G., R. N. Haward, Proc. Roy. Soc.A302, 453 (1968).

    Google Scholar 

  20. Binder, G., F. H. Müller, Koll. Zeit177, 129 (1961).

    Google Scholar 

  21. Haward, R. N., The Physics of Glassy Polymers, (ibid) Chap. VI.

  22. Maher, J., J. N. Hay, R. N Haward (to be published).

  23. Williams, J. G., Trans. J. Plast. Inst. p. 505 (1967).

  24. Gurevich, G., P. Koheko, Rubber Chem. and Tech.13, 904 (1940).

    Google Scholar 

  25. Haward, R. N., Trans. Farad Soc.38 381 (1942).

    Google Scholar 

  26. Müller, F. H., (1940) seeP. H. Hermans, The Phys. and Chem. of Cellulose Fibres, 418 Elsevier, (New York 1949).

    Google Scholar 

  27. Hoff, E. A. W., J. App. Chem.2, 441 (1952).

    Google Scholar 

  28. Haward, R. N., The Strength of Plastics and Glass, Chap. IV, Cleaver-Hume Press (London 1949).

    Google Scholar 

  29. Whitney, W., R. D. Andrews, J. Pol. Sci. C16, 298 (1967).

    Google Scholar 

  30. Pamphillo, C. A., L. A. Davis, J. App. Phys.42, 4674 (1971).

    Google Scholar 

  31. Treloar, L. R. G., The Physics of Rubber Elasticity, 2 nd Ed. Oxford Univ. Press, (1958).

  32. Porter, R. S., R. F. Johnson, Chem. Rev.66, 1 (1966).

    Google Scholar 

  33. Bauwens, J. -C., J. Mat. Sci.13, 1443 (1978).

    Google Scholar 

  34. Wignall, G. D., D. G. H. Ballard, J. Schelten, Europ. Pol. J.10, 861 (1974).

    Google Scholar 

  35. Kirste, R. G., W. A. Kruse, J. Schelten, Macromol. Chem.162, 299 (1976).

    Google Scholar 

  36. Flory, P. J., J. Chem. Phys.17, 303 (1949).

    Google Scholar 

  37. Argon, A. S., M. I. Bessonov, Phil. Mag.35, 917 (1977).

    Google Scholar 

  38. Owadh, A. A., I. W. Parsons, J. N. Hay, R. N. Haward, Polymer19, 386 (1978).

    Google Scholar 

  39. Bosnyak, C., I. W. Parsons, J. N. Hay, R. N. Haward, “Polymer” (to be published).

  40. Wellinghof, S. T., E. Baer, J. App. Pol. Sci.22, 2025 (1978).

    Google Scholar 

  41. Haward, R. N., C. Bucknall, Pure and App. Chem.46, 227 (1976).

    Google Scholar 

  42. Argon, A. S., Inhomogeneity of Plastic Deformation, Am. So. for Metals, Metals, Park, Ohio USA p. 161 (1973).

  43. Adam, G., A. Cross, R. N. Haward, J. Mat. Sci.10, 1582 (1975).

    Google Scholar 

  44. Vincent, P. I., Deformation and Fracture of High Polymers, ed. H. H. Kausch, J. A. Hassel, R. I. Jaffer, p. 298 Plenum Press (New York 1974).

    Google Scholar 

  45. Haward, R. N., Br. Pol. J.2, 209 (1970).

    Google Scholar 

  46. Vincent, P. I., Proc. Conf. Phys. Basis of Fracture, Oxford Sept. 1966 p. 155 (London) Inst. of Phys. and Phys. Soc.

  47. Owen, D. R. J., R. N. Haward Proc. Roy. Soc. A352, 505 (1977).

    Google Scholar 

  48. Bandyopadhyay, S., Environmental Stress Cracking of Polythene, Ph. D. Thesis, Monash Univ. (Melbourne 1979).

    Google Scholar 

  49. Rehage, G., G. Goldbach, Angew Makromol. Chem.1, 125 (1967).

    Google Scholar 

  50. Broutman, L., R. J. Patel, Polymer Eng. and Sci.11, 165 (1971).

    Google Scholar 

  51. Ender, D. H., J. App. Phys.39, 4871 (1968),

    Google Scholar 

  52. G'sell, C., J. J. Jonas, J. Mat. Sci.16, 583 (1979).

    Google Scholar 

  53. Cross, A., R. N. Haward, N. J. Mills, Polymer20, 288 (1979).

    Google Scholar 

  54. Cross, A., R. N. Haward, Polymer19, 677 (1978).

    Google Scholar 

  55. DiMarzio, E. A., F. Powell, J. App. Phys.50, 6061 (1979).

    Google Scholar 

  56. Wunderlich, B., J. Phys. Chem.64, 1052 (1960).

    Google Scholar 

  57. O'Reilly, J. M., J, App. Phys.48, 4043 (1977).

    Google Scholar 

  58. Smith, K., R. N. Haward, Polymer20, 921 (1979).

    Google Scholar 

  59. Robertson, R. E., J. App. Pol. Sci.7, 443 (1963).

    Google Scholar 

  60. Cornes, P. L., R. N. Haward, Polymer15, 149 (1974).

    Google Scholar 

  61. Rietsch, F., R. A. Duckett, I. M. Ward, Polymer20, 1133 (1979).

    Google Scholar 

  62. Haward, R. N., Brit. Pol. J.10, 65 (1978).

    Google Scholar 

  63. Struik, L. C. E., The Physical Ageing of Amorphous Polymers and other Materials, Elsevier (Amsterdam 1978).

    Google Scholar 

  64. Golden, J. H., B. L. Hammant, E. A. Hazell, J. App. Pol. Sci.11, 1571 (1967).

    Google Scholar 

  65. Allen, G., D. C. W. Morley, J. Williams, J. Mat. Sci.8, 1571 (1973).

    Google Scholar 

  66. Wyzgoski, M. G., G. S. Y. Yeh, Int. J. Pol. Mat.3, 149 (1974).

    Google Scholar 

  67. Illers, K. H., Makromol. Chem.127, 1 (1969).

    Google Scholar 

  68. Ali, M. S., R. P. Sheldon, J. Pol. Sci. C.38, 97 (1972).

    Google Scholar 

  69. Idem J. App. Pol. Sci.14, 2619 (1970).

    Google Scholar 

  70. Brady, T. E., G. S. Y. Yeh, J. Mat. Sci.8, 1583 (1973).

    Google Scholar 

  71. Morgan, R. J., J. E. O'Neal, J. Pol. Sci. (Phys.)14, 1053 (1976).

    Google Scholar 

  72. Gee, G., Polymer7, 179 (1966) Contemp Phys.11, 353 (1970).

    Google Scholar 

  73. Petrie, E., Polymeric Materials, pp. 55–118 Am. Soc. for Metals, Metals Park, Ohio 44073 (1975).

  74. Yeh, G. S. Y., P. H. Geil, J. Macromol. Chem. (Phys) B1, 235 (1967).

    Google Scholar 

  75. Neki, K., P. H. Geil, J. Macromol. Sci. (Phys) B8, 295 (1973).

    Google Scholar 

  76. Geil, P. H., Ind. Eng. Chem. (Prod. Res. and Dev)14 59 (1975).

    Google Scholar 

  77. Schoon, T. G. F., Br. Pol. J.2, 86 (1970).

    Google Scholar 

  78. Zingsheim, H. P., L. Bachman, Koll. Zeit246, 561 (1971).

    Google Scholar 

  79. Meyer, M., J. Vander Fande, D. R. Ullmann, J. Pol. Sci. (Phys)16, 2005 (1978).

    Google Scholar 

  80. Koenig, J. Z., M. K. Antoon, J. Pol. Sci. (Phys)15, 1329 (1977).

    Google Scholar 

  81. Straff, E., D. H. Uhlmann, J. Pol. Sci. (Phys)14, 1087 (1976).

    Google Scholar 

  82. McKinney, P. V., C. R. Foltz, J. App. Pol. Sci.11, 609 (1967).

    Google Scholar 

  83. Reddish, W., J. Pol. Sci.14, 123 (1966).

    Google Scholar 

  84. Ito, E., K. Yamamoto, Y. Kobayashi, T. Hatekeyama, Polymer19, 38 (1978).

    Google Scholar 

  85. Cunningham, A., I. M. Ward, H. A. Willis, V. Zichy, Polymer15, 749 (1974).

    Google Scholar 

  86. Stölting, J., F. H. Müller, Koll. Zeit.238, 460;240, 792 (1970).

    Google Scholar 

  87. Glaser, Z. R., F. R. Eirich, J. Pol. Sci. C31, 275 (1970).

    Google Scholar 

  88. Adam, G. A., I. W. Parson, R. N. Haward, Polymer16, 433 (1975).

    Google Scholar 

  89. Idem Europ. Pol. J.12, 279 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Rehage on the occasion of his 60th birthday.

With 22 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haward, R.N., Hay, J.N., Parsons, I.W. et al. The effect of chain structure on the annealing and deformation behaviour of polymers. Colloid & Polymer Sci 258, 643–662 (1980). https://doi.org/10.1007/BF01384357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384357

Keywords

Navigation