Skip to main content
Log in

Transformation and development of the flagellar apparatus ofCryptomonas ovata (Cryptophyceae) during cell division

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

InCryptomonas ovata, long, dorsal flagella are produced which transform during the following cell division into short, ventral flagella. At division there is a reorientation in cell polarity, and the parental basal apparatus, which comprises the basal bodies and associated roots, is distributed to the daughter cells via a complex sequence of events. Flagellar apparatus development includes the transformation of a four-stranded microtubular root into a mature root of different structure and function. Each newly formed basal body nucleates new microtubular roots, but receives a striated fibrous root from a parental basal body. The striated roots are originally produced on the transforming basal body and are “transferred” to the new basal bodies at each successive division. The development of the asymmetric flagellar apparatus throughout the cell cycle is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison WA, Brown DL (1986) Duplication of the flagellar apparatus and cytoskeletal microtubule system in the algaPolytomella. Cell Motil Cytoskeleton 6: 122–127

    Google Scholar 

  • Beech PL, Wetherbee R (1990 a) Direct observations on flagellar transformation inMallomonas splendens (Synurophyceae). J Phycol 26: 90–95

    Google Scholar 

  • — — (1990 b) The flagellar apparatus ofMallomonas spendens (Synurophyceae) at interphase and its development during the cell cycle. J Phycol 26: 95–111

    Google Scholar 

  • — —, Pickett-Heaps JD (1988) Transformation of the flagella and associated flagellar components during cell division in the coccolithophoridPleurochrysis caterae. Protoplasma 145: 37–46

    Google Scholar 

  • —, Heimann K, Melkonian M (1991) Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164: 23–37

    Google Scholar 

  • Farmer MA, Triemer RE (1988) Flagellar systems in the euglenoid flagellates. BioSystems 21: 283–291

    PubMed  Google Scholar 

  • Gaffal KP (1988) The basal body-root complex ofChlamydomonas reinhardtii during mitosis. Protoplasma 143: 118–129

    Google Scholar 

  • Heimann K, Reize IB, Melkonian M (1989) The flagellar developmental cycle in algae: flagellar transformation inCyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110

    Google Scholar 

  • Hibberd DJ, Greenwood AD, Griffiths HB (1971) Observations of the ultrastructure of the flagella and periplast in the Cryptophyceae. Br Phycol J 6: 61–72

    Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry inChlamydomonas reinhardtii. J Cell Sci 94: 273–285

    PubMed  Google Scholar 

  • McFadden GI, Schulze D, Surek B, Salisbury JL, Melkonian M (1987) Basal body reorientation mediated by a Ca2+-modulated contractile protein. J Cell Biol 105: 903–912

    PubMed  Google Scholar 

  • Melkonian M, Robenek H (1984) The eyespot apparatus of flagellated green algae: a critical review. Prog Phycol Res 3: 193–268

    Google Scholar 

  • —, Reize IB, Preisig HR (1987) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies onNephroselmis olivacea (Prasinophyceae). In: Wiessner W, Robinson DG, Starr RC (eds) Algal development, molecular and cellular aspects. Springer, Berlin Heidelberg New York, pp 102–114

    Google Scholar 

  • Mignot J-P, Joyon L, Pringsheim EG (1968) Compléments a l'étude cytologique des Cryptomonadines. Protistologica 4: 493–506

    Google Scholar 

  • Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. BioSystems 10: 117–144

    PubMed  Google Scholar 

  • —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae) II. Flagellar roots, connecting fibres, and numbering of individual flagella in green algae. Protoplasma 148: 41–56

    Google Scholar 

  • O'Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. BioSystems 16: 227–251

    Google Scholar 

  • Reymond OL, Pickett-Heaps JP (1982) A routine flat embedding method for electron microscopy of microorganisms allowing selection and precisely oriented sectioning of single cells by light microscopy. J Microsc 130: 79–84

    Google Scholar 

  • Rieder CL, Borisy GG (1982) The centrosome cycle in PtK2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol Cell 44: 117–132

    Google Scholar 

  • Roberts R (1984) Structure and significance of the cryptomonad flagellar apparatus. I.Cryptomonas ovata (Cryptophyta). J Phycol 20: 590–599

    Google Scholar 

  • —, Stewart KD, Mattox KR (1981) The flagellar apparatus ofChilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. J Phycol 17: 159–167

    Google Scholar 

  • Segaar PJ, Gerritsen AF (1989) Flagellar roots as vital instruments in cellular morphogenesis during multiple fission (sporulation) in the unicellular green flagellateBrachiomonas submarina (Chlamydomonadales, Chlorophyta). Crypt Bot 1: 249–274

    Google Scholar 

  • Sluiman HJ, Blommers PCJ (1990) Basal apparatus behaviour during cellular division (sporulation) in the coccoid green algaChlorosarcina. Protoplasma 155: 66–75

    Google Scholar 

  • Spurr AR (1969) A low-density epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43

    PubMed  Google Scholar 

  • Wetherbee R, Platt SJ, Beech PL, Pickett-Heaps JD (1988) Flagellar transformation in the heterokontEpipyxis pulchra (Chrysophyceae): direct observations using image enhanced light microscopy. Protoplasma 145: 47–54

    Google Scholar 

  • Wright M, Mir L, Moisand A (1985) Spatial relationships between the anterior centriole and mitotic center during interphase in the amoebae of the myxomycetePhysarum polycephalum. Dev Genet 5: 227–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perasso, L., Hill, D.R.A. & Wetherbee, R. Transformation and development of the flagellar apparatus ofCryptomonas ovata (Cryptophyceae) during cell division. Protoplasma 170, 53–67 (1992). https://doi.org/10.1007/BF01384457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01384457

Keywords

Navigation