Skip to main content
Log in

Computing singular solutions to nonlinear analytic systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

A method to generate an accurate approximation to a singular solution of a system of complex analytic equations is presented. Since manyreal systems extend naturally tocomplex analytic systems, this porvides a method for generating approximations to singular solutions to real systems. Examples include systems of polynomials and systems made up of trigonometric, exponential, and polynomial terms. The theorem on which the method is based is proven using results from several complex variables. No special conditions on the derivatives of the system, such as restrictions on the rank of the Jacobian matrix at the solution, are required. The numerical method itself is developed from techniques of homotopy continuation and 1-dimensional quadrature. A specific implementation is given, and the results of numerical experiments in solving five test problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E.L.: A survey of homotopy methods for smooth mappings. In: Allgower, E.L., Glashoff, K., Peitgen, H.-O. (eds.) Numerical solution of nonlinear equations. Lect. Notes Math. Vol. 878, pp. 1–29. Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  2. Allgower, E.L., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev.22, 28–85 (1980)

    Google Scholar 

  3. Chow, S.N., Mallet-Paret, J., Yorke, J.A.: Finding zeros of maps: Homotopy methods that are constructive with probability one. Math. Comput.32, 887–899 (1978)

    Google Scholar 

  4. Decker, D.W., Kelley, C.T.: Newton's method at singular points. I. SIAM J. Numer. Anal.17, 66–70 (1980)

    Google Scholar 

  5. Decker, D.W., Kelley, C.T.: Newton's method at singular points. II. SIAM J. Numer. Anal.17, 465–471 (1980)

    Google Scholar 

  6. Decker, D.W., Kelley, C.T.: Broyden's method for a class of problems having singular Jacobian at the root. SIAM J. Numer. Anal.22, 566–574 (1985)

    Google Scholar 

  7. Fischer, G.: Complex analytic geometry. Lect. Notes Math. Vol. 538. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  8. Garcia, C.B., Zangwill, W.I.: Pathways to solutions, fixed points, and equilibria. First Ed. Englewood Cliffs, N.J.: Prentice-Hall 1981

    Google Scholar 

  9. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rev.27, 537–563 (1985)

    Google Scholar 

  10. Griewank, A., Osborne, M.R.: Analysis of Newton's method at irregular singularities. SIAM J. Numer. Anal.20, 747–773 (1983)

    Google Scholar 

  11. Griffiths, P., Harris, J.: Principles of algebraic geometry. First Ed. New York: Wiley 1978

    Google Scholar 

  12. Guillemin, V., Pollack, A.: Differential topology, First Ed. Englewood Cliffs, NY. Prentice-Hall 1981

    Google Scholar 

  13. Gunning, R., Rossi, H.: Analytic functions of several complex Variables. First Ed. Englewood Cliffs, N.J.: Prentice Hall 1965

    Google Scholar 

  14. Incerti, S., Zirilli, F., Parisi, V.: A FORTRAN subroutine for solving systems of nonlinear simultaneous equations. Comput.24, 87–91 (1981)

    Google Scholar 

  15. Morgan, A.P.: Solving polynomial systems using continuation for scientific and engineering problems, First Ed. Englewood Cliffs, N.J.: Prentice-Hall 1987

    Google Scholar 

  16. Morgan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respectsm-homogeneous structures. Appl. Math. Comput.24, 101–113 (1987)

    Google Scholar 

  17. Morgan, A.P., Sommese, A.J.: Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput.24, 115–138 (1987)

    Google Scholar 

  18. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput.29, 123–160 (1989)

    Google Scholar 

  19. Morgan, A.P., Sommese, A.J.: Generically nonsingular polynomial continuation. In: Computational solution of nonlinear systems of equations. AMS Lectures in Appl. Math., Vol. 26, Allgower, E., Georg, K. (eds.), American Mathematical Society 1990

  20. Morgan, A.P., Sommese, A.J., Wampler, C.W.: Polynomial continuation for mechanism design problems. In: Computational solution of nonlinear systems of equations. AMS Lect. Appl. Math., Vol. 26, Allgower, E., Georg, K. (eds.), American Mathematical Society 1990

  21. Rall, L.B.: Convergence of the Newton process to multiple solutions. Numer. Math.9, 23–37 (1966)

    Google Scholar 

  22. Reddien, G.W.: On Newton's method for singular problems. SIAM J. Numer. Anal.15, 993–996 (1978)

    Google Scholar 

  23. Rheinboldt, W.C.: Numerical analysis of parameetrized nonlinear equations, First Ed. New York: John Wiley 1986

    Google Scholar 

  24. Rheinboldt, W.C., Burkardt, J.V.: Algorithm 596: A program for a locally parameterized continuation process. ACM Trans. Math. Software9, 236–241 (1983)

    Google Scholar 

  25. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Numerical continuation methods for solving polynomial systems arising in kinematics. ASME J. Design112, 59–68 (1990)

    Google Scholar 

  26. Watson, L.T.: A globally convergent algorithm for computing fixed points ofC 2 maps. Appl. Math. Comput.5, 297–311 (1979)

    Google Scholar 

  27. Watson, L.T., Billups, S.C., Morgan, A.P.: HOMPACK: A suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Software13, 281–310 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, A.P., Sommese, A.J. & Wampler, C.W. Computing singular solutions to nonlinear analytic systems. Numer. Math. 58, 669–684 (1990). https://doi.org/10.1007/BF01385648

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01385648

Subject classifications

Navigation