Skip to main content
Log in

Solution of underdetermined nonlinear equations by stationary iteration methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Nonlinear stationary fixed point iterations inR n are considered. The Perron-Ostrowski theorem [23] guarantees convergence if the iteration functionG possesses an isolated fixed pointu. In this paper a sufficient condition for convergence is given ifG possesses a manifold of fixed points.

As an application, convergence of a nonlinear extension of the method of Kaczmarz is proved. This method is applicable to underdetermined equations; it is appropriate for the numerical treatment of large and possibly ill-conditioned problems with a sparse, nonsquare Jacobian matrix. A practical example of this type (nonlinear image reconstruction in ultrasound tomography) is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, M.: Connection between gradient methods and Newton's method for functionals. Bull. de l'Acad. Polon. Sciences, Série math., astr., phys. Vol.IX, 12, 877–880 (1961)

    Google Scholar 

  2. Ansorge, R.: Über die Konvergenz der Iterationsverfahren zur Auflösung linearer Gleichungssysteme im Falle einer singulären Koeffizientenmatrix. Z. Angew. Math. Mech.40, 427 (1960)

    Google Scholar 

  3. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev.23, 4, 444–466 (1982)

    Google Scholar 

  4. Censor, Y., Gustafson, D.E., Lent, A., Tuy, H.: A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans. Nucl. Soc. NS26, 2, 2775–2779 (1979)

    Google Scholar 

  5. Censor, Y., Lent, A.: A cyclic subgradient projection method for the convex feasibility problem. Preprint, University of Haifa 1980

  6. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math.35, 1–12 (1980)

    Google Scholar 

  7. Eremin, I.I.: Certain iteration methods in convex programming. Ekonom. i Mat. Metody2, 870–886 (1966) (in Russian)

    Google Scholar 

  8. Friedrich, V.: Zur iterativen Behandlung unterbestimmter und nichtkorrekter linearer Aufgaben. Beiträge zur Numer. Math.3, 11–20 (1975)

    Google Scholar 

  9. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol.29, 471–481 (1970)

    Google Scholar 

  10. Hart, W.L., Motzkin, T.: A composite Newton-Raphson gradient iteration method for the solution of systems of equations. Pacific J. Math.6, 691–707 (1956)

    Google Scholar 

  11. Herman, G.T., Lent, A., Lutz, P.H.: Iterative relaxation methods for image reconstruction. Proc. ACM '75, Minneapolis Conf. pp. 169–174 (1975)

  12. Huang, T.S.: Introduction. In: Huang, T.S. (ed.). Picture processing and digital filtering. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  13. Johnson, L.E., Gilbert, F.E.: Inversion and inference for teleseismic ray data. In: Bolt, B.A. (ed.). Methods of computational physics 12 (Seismology): Body waves and sources. New York, London: Academic Press 1972

    Google Scholar 

  14. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Akad. Pol. Soc. Lett. a35, 355–357 (1937)

    Google Scholar 

  15. Kak, A.C.: Computerized tomography with X-ray, emission and ultrasound sources. Proc. IEEE67, 1245–1272 (1979)

    Google Scholar 

  16. Keller, H.B.: On the solution of singular and semidefinite linear systems by iteration. SIAM J. Numer. Anal.2, 281–290 (1965)

    Google Scholar 

  17. McCormick, S.F.: An iterative procedure for the solution of constrained nonlinear equations with application to optimization problems. Numer. Math.23, 371–385 (1975)

    Google Scholar 

  18. McCormick, S.F.: The methods of Kaczmarz and iterative row orthogonalization for solving linear equations and least squares problems in Hilbert space. Indiana University. Math. J.26, (1977)

  19. McKinnon, G.C., Bates, R.H.T.: A limitation on ultrasonic transmission tomography. Ultrasonic Imaging2, 48–54 (1980)

    Google Scholar 

  20. Muhometov, R.G.: The problem of recovery of a two-dimensional Riemannian metric and integral geometry. Soviet. Math. Dokl.18, 27–31 (1977)

    Google Scholar 

  21. Oldenburger, R.: Infinite powers of matrices and characteristic roots. Duke Math. J.6, 357–361 (1940)

    Google Scholar 

  22. Ortega, J., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970

    Google Scholar 

  23. Ostrowski, A.: Solution of equations and systems equations. New York: Academic Press 1966

    Google Scholar 

  24. Ostrowski, A.: Vorlesungen über Differential- und Integralrechnung, Bd. II. Basel: Birkhäuser 1968

    Google Scholar 

  25. Raik, E.: Fejér type methods in Hilbert space. Eesti NSV Tead. Akad. Toimetised Füüs.-Mat.16, 286–293 (1967) (in Russian)

    Google Scholar 

  26. Schomberg, H.: An improved approach to reconstructive ultrasound tomography. J. Phys., D: Appl. Phys.11, L181–L185 (1978)

    Google Scholar 

  27. Schomberg, H.: Nonlinear image reconstruction from projections of ultrasonic travel times and electric current densities. In: Herman, G.T., Natterer, F. (eds.). Mathematical aspects of computerized tomography, Lect. Notes in Med. and Biol. 8. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  28. Tanabe, K.: Projection method for solving a singular system of linear equations, Numer. Math.17, 203–214 (1971)

    Google Scholar 

  29. Tanabe, K.: Characterization of linear stationary iterative processes for solving a singular system of linear equations. Numer. Math.22, 349–359 (1974)

    Google Scholar 

  30. Tompkins, C.: Projection methods in calculation. Proc. Sec. Symp. Lin. Progr., Washington D.C., pp. 425–448, 1955

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyn, KH. Solution of underdetermined nonlinear equations by stationary iteration methods. Numer. Math. 42, 161–172 (1983). https://doi.org/10.1007/BF01395309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395309

Subject Classifications

Navigation