Skip to main content
Log in

On best error bounds for approximation by piecewise polynomial functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

An analog of the well-known Jackson-Bernstein-Zygmund theory on best approximation by trigonometric polynomials is developed for approximation methods which use piecewise polynomial functions. Interpolation and best approximation by polynomial splines, Hermite and finite element functions are examples of such methods. A direct theorem is proven for methods which are stable, quasi-linear and optimally accurate for sufficiently smooth functions. These assumptions are known to be satisfied in many cases of practical interest. Under a certain additional assumption, on the family of meshes, an inverse theorem is proven which shows that the direct theorem is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlberg, J. H., Nilson, E. N., Walsh, J. L.: The theory of splines and their applications. New York: Academic Press 1967

    Google Scholar 

  2. Aubin, J.-P.: Approximation of elliptic boundary value problems. New York: Wiley 1972

    Google Scholar 

  3. Azis, A. K.: The mathematical foundations of the finite element method with applications to partial differential equations. Proc. Symp. Univ. of Maryland, 1972. New York: Academic Press 1972

    Google Scholar 

  4. Brenner, P., Thomée, V., Wahlbin, L. B.: Besov spaces and applications to difference methods for initial value problems. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  5. Burchard, H. G., Hale, D. F.: Piecewise polynomial approximation on optimal meshes. J. Approximation Theory14, 128–147 (1975)

    Google Scholar 

  6. Butler, G., Richards, F.: AnLp-saturation theorem for splines. Canad. J. Math.24, 957–966 (1972)

    Google Scholar 

  7. Butzer, P. L., Scherer, K.: On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and the theorems of M. Zamansky and S. B. Stečkin. Aequations Math.3, 170–185 (1969)

    Google Scholar 

  8. Butzer, P. L., Scherer, K.: On the fundamental theorems of approximation theory and their dual versions. J. Approximation Theory,3, 87–100 (1970)

    Google Scholar 

  9. Campanato, S.: Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa17, 175–188 (1963)

    Google Scholar 

  10. Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa18, 93–140 (1964)

    Google Scholar 

  11. de Boor, C.: On uniform approximation by splines. J. Approximation Theory1, 219–235 (1968)

    Google Scholar 

  12. Gagliardo, E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi in funzioni inn variabili. Rend. Sem. Mat., Univ. Padova27, 284–305 (1957)

    Google Scholar 

  13. Gaier, D.: Saturation bei Spline-Approximation und Quadraturen. Numer. Math.16, 129–140 (1970)

    Google Scholar 

  14. Grevholm, B.: On the structure of the spaces ℒ p, λ k .Math. Scand.26, 241–254 (1970)

    Google Scholar 

  15. Hedstrom, G. W., Varga, R. S.: Application of Besov spaces to spline approximation. J. Approximation Theory4, 295–327 (1971)

    Google Scholar 

  16. Hörmander, L.: Estimates for translation invariant operators in Lp-spaces. Acta Math.104, 93–140 (1960)

    Google Scholar 

  17. Hörmander, L.: Linear partial differential operators. Berlin-Göttingen-Heidelberg: Springer 1963

    Google Scholar 

  18. Löfström, J.: Besov spaces in the theory of approximations. Ann. Math. Pure Appl.85, 93–184 (1970)

    Google Scholar 

  19. McClure, D. E.: Nonlinear segmented function approximation and analysis of line patterns. Quart. Appl. Math.33, 1–37 (1975)

    Google Scholar 

  20. Munteanu, M. J., Schumaker, L. L.: Direct and inverse theorems for multidimensional spline approximation. Indiana Univ. Math. J.23, 461–470 (1973)

    Google Scholar 

  21. Nikolskii, S. M.: Approximation of functions of several variables and imbedding theorems. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  22. Nitsche, J.: Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11, 346–348 (1968)

    Google Scholar 

  23. Nitsche, J.: Sätze von Jackson-Bernstein-typ für die Approximation mit Spline-Funktionen. Math. Z.109, 97–106 (1969)

    Google Scholar 

  24. Nitsche, J.: Umkehrsätze für Spline-Approximation. Compositio Math.21, 400–416 (1969)

    Google Scholar 

  25. Peetre, J.: Funderingar om Becov-rum. Lecture notes (Swedish), Dept. of Math., Lund (1966)

    Google Scholar 

  26. Peetre, J.: Sur les espaces de Becov. C. R. Acad. Sc. (Paris)264, 281–283 (1967)

    Google Scholar 

  27. Peetre, J.: Analysis in quasi-Banach space and approximation theory. Technical report, 1972:3, Dept. of Math., Lund (1972)

    Google Scholar 

  28. Peetre, J.: New thoughts on Besov spaces. Lecture notes, Dept. of Math., Duke Univ. (1974)

  29. Rice, J. R.: On the degree of convergence of nonlinear spline approximation, pp. 349–365, In: I. J. Schoenberg, Approximation with special emphasis on spline functions. Proc. Symp. Univ. Wisconsin, 1969. New York: Academic Press 1969

    Google Scholar 

  30. Richards, F.: On the saturation class for spline functions. Proc. Amer. Math. Soc.33, 471–476 (1972)

    Google Scholar 

  31. Scherer, K.: Über die beste Approximation von Lp-Funktion durch Splines. Proc. Conf. Constructive Function Theory, Varna, pp.277–286 (1970)

  32. Scherer, K.: On the best approximation of continuous functions by splines. SIAM J. Numer. Anal.7, 418–423 (1972)

    Google Scholar 

  33. Scherer, K.: Characterization of generalized Lipschitz classes by best approximation with splines. SIAM J. Numer. Anal.11, 283–304 (1974)

    Google Scholar 

  34. Schoenberg, I. J.: Approximation with special emphasis on spline functions. Proc. Symp. Univ. Wisconsin, 1969. New York: Academic Press 1969

    Google Scholar 

  35. Schultz, M. H.: Spline analysis. Englewood Cliffs, N. J.: Prentice Hall 1973

    Google Scholar 

  36. Shapiro, H. S.: Smoothing and approximation of functions. New York: van Nostrand Reinhold 1969

    Google Scholar 

  37. Stein, E. M.: The characterization of functions arising as potentials II. Bull. Amer. Math. Soc.68, 577–582 (1962)

    Google Scholar 

  38. Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970

    Google Scholar 

  39. Strang, G.: The finite element method and approximation theory, pp. 547–583, In: B. Hubbard, Numerical solution of partial differential equations—II, Synspade 1970. London-New York: Academic Press 1971

    Google Scholar 

  40. Strang, G.: Approximation in the finite element method. Numer. Math.19, 81–98 (1972)

    Google Scholar 

  41. Strang, G., Fix, G. J.: An analysis of the finite element method. Englewood Cliffs, N. J.: Prentice-Hall 1973

    Google Scholar 

  42. Taibleson, M. H.: On the theory of Lipschitz spaces of distributions on euclideann-space. I. J. Math. Mech.,13, 407–480 (1964); Taibleson, M. H.: On the theory of Lipschitz spaces of distributions on euclideann-space. II. (ibid) J. Math. Mech.,14, 821–840 (1965). Taibleson, M. H.: On the theory of Lipschitz spaces of distributions on euclideann-space. III (ibid)15, 973–981 (1966)

    Google Scholar 

  43. Timan, A. F.: Theory of approximation of functions of a real variable. New York: McMillan 1973

    Google Scholar 

  44. Widlund, O.: Some results on best possible error bounds for finite element methods and approximation with piecewise polynomial functions. Lecture notes in Math., Vol. 228, pp. 253–263. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  45. Widlund, O.: Schauder and Lp estimates for linear elliptic systems, revisited. (to appear)

  46. Zygmund, A.: Trigonometric series, Vol. I. Cambridge: Cambridge University Press 1959

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work presented in this paper was supported by the ERDA Mathematics and Computing Laboratory, Courant Institute of Mathematical Sciences, New York University, under Contract E(11-1)-3077 with the Energy Research and Development Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widlund, O. On best error bounds for approximation by piecewise polynomial functions. Numer. Math. 27, 327–338 (1976). https://doi.org/10.1007/BF01396181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396181

AMS Subject Classifications

Navigation