Skip to main content
Log in

Studies on the V2O5-TiO2 system part 1. Thermoelectric power and electrical conductivity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The thermoelectric power and the resistivity of V2O5- TiO2 mixtures over ranges of composition and temperature from 20° to 500° in air have been measured, The mixtures were obtained by coprecipitation of aqueous solutions of NH4VO3 and TiCl4. calcined during 90 h at 550° and then sintered. Resistances were measured by the four points method.

At the VO5/2 35–100% M range, the activation energies for conductivity change from 0,36 to 0.62eV, while for the thermoelectric power they change from 0,18 to 0.24eV. It can be assumed from these values that the conduction mechanism over this concentration range is due to the “hopping” of small polarons, arising principally, from the presence of V4+ ions.

In the samples with a high TiO2 content, the activation energies for conductivity were 0.82 and 0.36eV, for the different samples.

From the variation of thermoelectric power with temperature, it can be assumed that the ionization energy of the donors centers lies at 0.83eV under the conducting band. A mechanism for band conduction is inferred from the results, being the V4+ donating centers and the V5+ receptive centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Sterligova, V. V. Karpovich, V. F. Anufrienko and L. N. Kurina.Kinet. Katal., 12, 255 (1971).

    Google Scholar 

  2. D. Vanhove.Thesis, Faculty of Science, University of Poitiers (1973).

  3. I. K. Kristensen,Mat. Res. Buff., 9, 1677 (1974).

    Google Scholar 

  4. V. V. Vinogradov and A. I. Shelykh,Sov. Phys. Sol. State, 13, 2781 (1972).

    Google Scholar 

  5. D. S. Volzhenskii and M. V. Pashkowskii,Sov. Phys. Sol. State, 11, 950 (1969).

    Google Scholar 

  6. P. Nagels and M. Demayer,Proc. 10th lnt. Coral. Physics Semiconductors, Cambridge, 321 (1970)

  7. H. Clark and D. J. Berets,AD. Catal., 9, 204 (1957).

    Google Scholar 

  8. J. Mackenzie,J. Chem. Phys., 46, 154 (1967).

    Google Scholar 

  9. I. B. Patrina,Sov. Phys. Sol. State, 6, 2581 (1965).

    Google Scholar 

  10. T. S. Zolyan and A. R. Regrel,Sor. Phys. Sol. State, 6, 1189 (1964).

    Google Scholar 

  11. H. P. R. Frederikse,J. Appl. Phys., 32, 2211 (1961).

    Google Scholar 

  12. J. Yahia,Phys, Rev., 130, 1711 (1963).

    Google Scholar 

  13. M. Itakura, N. Niizaki, H. Toyoda and N. Iwasaki,Japan J. Appl. Ph ys., 6, 311 (1967).

    Google Scholar 

  14. R. G. Bredkenridge and W. R. Hosler,Phys. Rev., 91, 793 (1953).

    Google Scholar 

  15. S. Katoaka and T. Suzuki,Bull, Electrotech. Lab., Tokio, 18, 732 (1954).

    Google Scholar 

  16. B. I. Boltaks. F. I. Vasenin and A. E. Salumina.Zhur. Tekh. Fiz., 21, 532 (1951).

    Google Scholar 

  17. D. C. Cronomeyer,Phys. Rev., 87, 876 (1952).

    Google Scholar 

  18. J. H. Becker and W. R. Hosler,Phys. Rev., 137A, 1872 (1965).

    Google Scholar 

  19. A. Von Hippel. S. J. Kanaljs and W. B. Westphal,J. Phys. Chem. Solids, 23, 779 (1962).

    Google Scholar 

  20. J. M. Honing.I.B.M.J. Res. Develop., 14, 232 (1970).

    Google Scholar 

  21. A. Moran Medeina.Tesina de licenciatura.. University of Madrid (1972).

  22. R. B. Lauer. R. R. Adiss and K. Chosh Amol,J. Appl. Phys., 41, 3508 (1971).

    Google Scholar 

  23. J. M. Albella. A. Moran. J. P. Somoano and J. A. Soria,Acta Cientifica Venezolana, 24, Suplemento n° 2, 195 (1973).

    Google Scholar 

  24. A. J. Bosman and H. J. Van Daal,Advan. Phys., 19, 1 (1970).

    Google Scholar 

  25. J. Yamashita and T. Kurosawa,J. Phys. Chem. Solids, 5, 34 (1958).

    Google Scholar 

  26. C. Crevecoeur and H. J. de Wit.J. Phys. Chem. Solids, 31, 783 (1970).

    Google Scholar 

  27. D. K. Chakrabarty. D. Gaha and A. B. Biswas,J. Mat. Sci., 11, 1347 (1976).

    Google Scholar 

  28. J. H. Perlstein.J. Solid State Chem., 3, 217 (1971).

    Google Scholar 

  29. J. B. Goodenough.J. Solid State Chem., 1, 349 (1970).

    Google Scholar 

  30. G. Louguet.Thesis, University of Poitiers (1972).

  31. R. Martino. Communication interna dcl CINDECA.

  32. H. Chon. C. D. Prater and J. P. Somoano,An Fisica Madrid, 65, 325 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author to whom all correspondence should be addressed

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, E., Gambaro, L.A. & Thomas, H.J. Studies on the V2O5-TiO2 system part 1. Thermoelectric power and electrical conductivity. Transition Met Chem 5, 139–145 (1980). https://doi.org/10.1007/BF01396894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396894

Keywords

Navigation