Skip to main content
Log in

Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition

  • On the Numerical Solution of the First Biharmonic Boundary Value Problem
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We consider a mixed finite element approximation of the stationary, incompressible Navier-Stokes equations with slip boundary condition, which plays an important rôle in the simulation of flows with free surfaces and incompressible viscous flows at high angles of attack and high Reynold's numbers. The central point is a saddle-point formulation of the boundary conditions which avoids the well-known Babuška paradox when approximating smooth domains by polyhedrons. We prove that for the new formulation one can use any stable mixed finite element for the Navier-Stokes equations with no-slip boundary condition provided suitable bubble functions on the boundary are added to the velocity space. We obtain optimal error estimates under minimal regularity assumptions for the solution of the continous problem. The techniques apply as well to the more general Navier boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

    Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math.12, 623–727 (1959)

    Google Scholar 

  3. Aubin, J.P.: Behaviour of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods. Ann. Sci. Norm Super. Pisa, Cl. Sci., IV. Ser.21, 599–637 (1967)

    Google Scholar 

  4. Babuška, I.: The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In: Differential Equations and their Applications. New York: Academic Press 1963

    Google Scholar 

  5. Babuška, I.: The finite element method with Lagrange multipliers. Numer. Math.20, 179–192 (1973)

    Google Scholar 

  6. Beavers, G.J., Joseph, D.D.: Boundary conditions of a naturally permeable wall. J. Fluid Mech.30, 197–207 (1967)

    Google Scholar 

  7. Bernardi, C.: Optimal finite element interpolation on curved domains. Preprint, Université de Paris VI, 1984

  8. Blum, H., Rannacher, R.: On the boundary value problem for the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci.2, 556–581 (1980)

    Google Scholar 

  9. Brezzi, F.: On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numer.8, 129–151 (1974)

    Google Scholar 

  10. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of non-linear problems I. Branches of non-singular solutions. Numer. Math.36, 1–25 (1980).

    Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978

    Google Scholar 

  12. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer.9, 77–84 (1975).

    Google Scholar 

  13. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Springer Series in Computational Mathematics. Berlin-heidelberg-New York-Tokyo: Springer 1986

    Google Scholar 

  14. Mazja, V.G., Plamenevskii, B.A., Stupyalis, L.T.: The three-dimensional problem of steady-state motion of a fluid with a free surface. Trans. Am. Math. Soc.123, 171–268 (1984).

    Google Scholar 

  15. Navier, C.L.M.H.: Sur les lois de l'équilibre et du mouvement des corps solides élastiques. Mem. Acad. R. Sci. Inst. France6, 369 (1827)

    Google Scholar 

  16. Nitsche, J.A.: Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math.11, 346–348 (1968)

    Google Scholar 

  17. Nitsche, J.A.: On Korn's second inequality. RAIRO Anal. Numer.15, 237–248 (1981)

    Google Scholar 

  18. Saito, H., Scriven, L.E.: Study of coating flow by the finite element method. J. Comput. Phys.42, 53–76 (1981)

    Article  Google Scholar 

  19. Solonnikov, V.A.: Solvability of three dimensional problems with a free boundary for a stationary system of Navier-Stokes equations. J. Sov. Math.21, 427–450 (1983)

    Article  Google Scholar 

  20. Stokes, G.G.: On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambridge Philos. Soc.9, 8 (1851)

    Google Scholar 

  21. Verfürth, R.: Finite element approximation of stationary Navier-Stokes equations with slip boundary condition. Habilitationsschrift, Report Nr. 75, Univ. Bochum, 1986

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verfürth, R. Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1986). https://doi.org/10.1007/BF01398380

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01398380

Subject Classifications

Navigation