Skip to main content
Log in

Fast poisson solvers on general two dimensional regions for the Dirichlet problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

It is shown that by using the simplest construction of discrete dipoles, the operation count for solving the Dirichlet problem of Poisson's equation by the capacitance matrix method does not exceed constant timesn 2 logn. n=1/h. Certain first and second order schemes of interpolating boundary conditions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anselone, P.M.: Collectively compact operator approximation theory. Englewood Cliffs, N.J.: Prentice Hall 1971

    Google Scholar 

  2. Bank, R.E.: Marching algorithms for elliptic boundary value problems. Ph.D. Thesis, Harvard University, 1975

  3. Bank, R.E., Rose, D.J.: An O (n 2) method for solving constant coefficient boundary value problems in two dimensions. SIAM J. Numer. Anal.12, 529–540 (1975)

    Google Scholar 

  4. Bramble, J.H., Hubbard, B.E.: On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation. Numer. Math.4, 313–327 (1962)

    Google Scholar 

  5. Bromwich, A.: An introduction to the theory of infinite series. London: Mcmillian 1926

    Google Scholar 

  6. Buneman, O.: Analytic inversion of the five-point Poisson operator. J. Computational Phys.8, 500–505 (1971)

    Google Scholar 

  7. Buzbee, B.L., Dorr, F.W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal.11, 753–763 (1974)

    Google Scholar 

  8. Buzbee, B.L., Dorr, F.W., George, J.A., Golub, G.H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal.8, 722–736 (1971)

    Google Scholar 

  9. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson's equation. SIAM J. Numer. Math.7, 627–656 (1970)

    Google Scholar 

  10. Courant, R., Hilbert, D.: Methods of mathematical physics. New York: Interscience 1953

    Google Scholar 

  11. Daniel, J.W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal.4, 10–26 (1967)

    Google Scholar 

  12. Fischer, D., Golub, G., Hald, O., Leiva, C., Widlund, O.: On Fourier-Toeplitz methods for separable elliptic problems. Math. Comput.28, 349–368 (1974)

    Google Scholar 

  13. Forsythe, G.E., Wasow, W.R.: Finite differences methods for partial differential equations. New York: Wiley 1960

    Google Scholar 

  14. Garabedian, P.R.: Partial differential equations. New York: Wiley 1964

    Google Scholar 

  15. George, J.A.: The use of direct methods for the solution of the discrete Poisson equation on nonrectangular regions. Comp. Sci. Dept. Report 159, Stanford University,

  16. Hayes, R.M.: Iterative methods of solving linear problems on Hilbert space. Nat. Bur. of Standards, Applied Math. Series,39, 71–103 (1954)

    Google Scholar 

  17. Hestenes, M.R.: The conjugate gradient method for solving linear systems. Proc. Symp. Appl. Math.6, 83–102 (1956)

    Google Scholar 

  18. Hestenes, M.R., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards49, 409–436 (1952)

    Google Scholar 

  19. Hockney, R.W.: A fast direct solution of Poisson's equation using Fourier analysis. J. Assoc. Comput. Mach.12, 95–113 (1965)

    Google Scholar 

  20. Hockney, R.W.: Formation and stability of virtual electrodes on a cylinder. J. Appl. Phys.39, 4166–4170 (1968)

    Google Scholar 

  21. Hockney, R.W.: POT4—A fast direct Poisson solver for the rectangle allowing some mixed boundary conditions and internal electrodes. IBM Research, R.C. 2870, 1970

  22. Hockney, R.W.: The potential calculation and some applications. Methods in computational physics, Vol. 9. London: Academic Press 1970

    Google Scholar 

  23. Householder, A.S.: The theory of matrices in numerical analysis. New York: Blaisdell, 1964

    Google Scholar 

  24. Kantorovich, L.V., Krylov, V.I.: Approximate methods of higher analysis.

  25. Luenberger, D.G.: Introduction to linear and nonlinear programming. Reading, Mass.: Addison-Wesley 1970

    Google Scholar 

  26. McCrea, W.H., Whipple, F.J.W.: Random paths in two or three dimensions. Proc. Roy. Soc. Edinburgh, Sect. A,60, 281–298 (1940)

    Google Scholar 

  27. O'Leary, D., Widlund, O.: New York University, Report (to appear)

  28. Proshurowski, W.: Numerical solution of Helmholtz's equation by implicit capacitance matrix methods. Math. Software (to appear)

  29. Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz equation by the capacitance matrix method. Math. Comput.30, 433–468 (1976)

    Google Scholar 

  30. Shieh, A.: Fast Poisson solvers on nonrectangular regions. Ph.D. Thesis, New York University 1976

  31. Shieh, A.: On the convergence of the conjugate gradient method for singular capacitance matrix equations from the Neumann problem of the Poisson equation. Numer. Math.29, 307–327 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This report will also appear as Lawrence Berkeley Laboratory report #4669. Sponsored by the United States Army under Contract No. DAAG29-75-D-0024 and Energy Research and Development Administration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shieh, A.S.L. Fast poisson solvers on general two dimensional regions for the Dirichlet problem. Numer. Math. 31, 405–429 (1978). https://doi.org/10.1007/BF01404568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404568

Subject Classifications

Navigation