Skip to main content
Log in

Hydrodynamic lubrication of squeeze-film porous bearings

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Closed-form analytical solutions for three different types of squeeze-film porous bearing are introduced in this paper. The effects of the permeability parameter on the pressure profile, load-carrying capacity, and time required to squeeze the fluid out of the lubricated conjunction are presented. The results show that as the permeability parameter increases, both the pressure profiles and the load-carrying capacity of the bearing decrease in the case of pure squeeze motion. Furthermore, the results show that for dimensionless permeability parameters less than 0.001, the effect of the porous layer on the hydrodynamic lubrication of squeeze-film porous bearings can be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Clearance, m

e :

Eccentricity, m

h :

Film thickness, m

h p :

Porous layer thickness, m

k x :

Permeability of the porous layer inx-direction, m2

k y :

Permeability of the porous layer iny-direction, m2

k z :

Permeability of the porous layer inz-direction, m2

k 1 :

Permeability ratio

p :

Pressure within film region, Pa

p * :

Pressure within porous layer, Pa

P :

Dimensionless pressure within film region

P * :

Dimensionless pressure within porous layer

r :

Radial coordinate

\(\bar r\) :

Dimensionless radial coordinate

u a :

Velocity of surfacea inx-direction, m/s

u b :

Velocity of surfaceb inx-direction, m/s

v a :

Velocity of surfacea iny-direction, m/s

v b :

Velocity of surfaceb iny-direction, m/s

w :

Squeeze velocity, −∂h/∂t, m/s (w a =−w,w b =0)

w 0 :

Flow velocity into porous layer inz-direction, m/s

w z :

Load-carrying capacity per unit width, N/m

W z :

Dimensionless load-carrying capacity

x :

Coordinate, m

X :

Dimensionlessx-coordinate

y :

Coordinate, m

z :

Coordinate, m

Z :

Dimensionlessz-coordinate

γ:

Dimensionless parameter,l/h p

η:

Lubricant viscosity within film region, Pa s

η * :

Lubricant viscosity within porous layer, Pa s

η 0 :

Lubricant viscosity at atmospheric pressure, Pa s

ϱ:

Lubricant density within film region, Kg/m3

ϱ * :

Lubricant density within porous layer, Kg/m3

ϕ:

Circumferential coordinate, rad

ψ:

Dimensionless permeability parameter,\(k_z h_p /h_{0^3 } \)

ɛ:

Eccentricity ratio

References

  1. Morgan, V. T., Cameron, A.: Mechanism of lubrication in porous metal bearings. Lubrication and Wear Institution of Mechanical Engineers, London, Paper89, 151–157 (1957).

    Google Scholar 

  2. Parakash, J., Vij, S. K.: Research note: hydrodynamic lubrication of a porous slider. J. Mech. Eng. Sci.15, 232–234 (1973).

    Google Scholar 

  3. Bhat, M. V.: Hydrodynamic lubrication of a porous composite slider bearing. Jap. J. Appl. Physics17, 479–481 (1978).

    Google Scholar 

  4. Patel, K. C., Gupta, J. L.: Hydrodynamic lubrication of a porous slider bearing with slip velocity. Wear85, 309–317 (1983).

    Google Scholar 

  5. Murti, P. R. K.: Hydrodynamic lubrication of long porous bearings. Wear18, 449–460 (1971).

    Google Scholar 

  6. Murti, P. R. K.: Hydrodynamic lubrication of short porous bearings. Wear19, 17–25 (1972).

    Google Scholar 

  7. Murti, P. R. K.: Lubrication of narrow porous bearings with arbitrary wall thickness. J. Lubrication Techn., Paper No. 73-Lub-G 1973.

  8. Cusano, C.: Lubrication of porous journal bearings. J. Lubrication Techn., Trans. ASME14, 69–73 (1972).

    Google Scholar 

  9. Cusano, C.: Lubrication of a two-layer porous journal bearing. J. Mech. Eng. Sci.14, 335–339 (1972).

    Google Scholar 

  10. Reason, B. R., Dyer, D.: A numerical solution for the hydrodynamic lubrication of finite porous journal bearings. Proc. Inst. Mech. Eng.187, 71–78 (1973).

    Google Scholar 

  11. Reason, B. R., Siew, A. H.: A refined numerical solution for the hydrodynamic lubrication of finite porous journal bearings. Proc. Inst. Mech. Eng.199, 85–93 (1985).

    Google Scholar 

  12. Kumar, V.: Hydrodynamic load capacity of a full porous journal bearing of finite length in the turbulent regime considering slip flow and curvature. Wear67, 167–176 (1981).

    Google Scholar 

  13. Kumar, A., Rao, N. S.: Steady state performance of finite hydrodynamic porous journal bearings in turbulent regimes. Wear167, 121–126 (1993).

    Google Scholar 

  14. Lin, J. R., Hwang, C. C.: Lubrication of short porous journal bearings — use of the Brinkmanextended Darcy model. Wear161, 93–104 (1993).

    Google Scholar 

  15. Wu, H.: An analysis of the squeeze film between porous rectangular plates. J. Lubrication Techn., Trans. ASME94, 64–68 (1972).

    Google Scholar 

  16. Bujurke, N. M., Jagadeeswar, M., Shiremath, P. S.: Analysis of normal stress effects in a squeeze film porous bearing. Wear116, 237–248 (1987).

    Google Scholar 

  17. Bujurke, N. M., Patil, H. P.: The effects of variable permeability and roughness of porous bearings. Int. J. Mech. Sci.34, 335–362 (1992).

    Google Scholar 

  18. Hamrock, B. J.: Fundamentals of fluid film lubrication. New York: McGraw-Hill 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsharkawy, A.A., Nassar, M.M. Hydrodynamic lubrication of squeeze-film porous bearings. Acta Mechanica 118, 121–134 (1996). https://doi.org/10.1007/BF01410512

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410512

Keywords

Navigation