Skip to main content
Log in

Successes and difficulties of unified quark-antiquark potential models

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We study the qualitative and quantitative properties of the spectrum of a two-body hamiltonian with relativistic kinematics. We show that this kinematics leads in a natural way to the observed features of light flavour (u, d, s) spectroscopy. After having established the basic properties of the operator (p 2+m 2)1/2+V(r) in the cases of linear or logarithmic potentials, we show that, to first approximation, all\(q_1 \bar q_2\) meson states can be reproduced with a very simple universal flavour-independent potential whose parameters are directly related to basic physical quantities: the Regge slopes of light flavours and the quasi-logarithmic coupling strength of heavy quarks. We can derive equivalent effective non-relativistic hamiltonians which justify the successes of N.R. approaches. The main difficulties encountered, in particular in incorporating spin effects, appear to be due to the fact that, in phenomenological potential models, chiral symmetry and the ensuing Goldstone nature of the pion cannot be implemented in a natural way. Hence, such an approach can take its full predictive power only if it is based on a deeper field-theoretic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Footnotes

  1. T. Appelquist, D.H. Politzer: Phys. Rev. Lett.34, 43 (1975)

    Google Scholar 

  2. E. Eichten et al.: Phys. Rev. Lett.34, 369 (1975)

    Google Scholar 

  3. E. Eichten et al.: Phys. Rev.D 17, 3090 (1978);D 21, 203 (1980)

    Google Scholar 

  4. C. Quigg, J.L. Rosner: Phys. Rep.56, p. 167 (1979) and further references therein

    Google Scholar 

  5. A. Martin: Phys. Lett.93B, 338 (1980)

    Google Scholar 

  6. W. Buchmüller, G. Grunberg, S.-H. Tye: Phys. Rev. Lett.45, 103 (1980);45, 587 (E) (1980)

    Google Scholar 

  7. W. Buchmüller, S.-H. Tye: Phys. Rev.D 24, 132 (1981) and further references therein

    Google Scholar 

  8. W. Buchmüller: Testing QCD in quarkonium spectroscopy, p. 91 in: New Flavours. Moriond workshop, J. Tran Thanh Van, L. Montanet eds. Gif sur Yvette: Frontières 1982, and further references therein

    Google Scholar 

  9. G. Bhanot, S. Rudaz: Phys. Lett.78B, 119 (1978)

    Google Scholar 

  10. J.L. Richardson: Phys. Lett.82B, 272 (1979)

    Google Scholar 

  11. A. Martin: Phys. Lett.100B, 511 (1981), see also A. Martin, J.M. Richard: Phys. Lett.115B, 323 (1982)

    Google Scholar 

  12. S. Ono, F. Schöberl: Phys. Lett.118B, 419 (1982)

    Google Scholar 

  13. H. Grosse, A. Martin: Phys. Rep.C60, 342 (1980)

    Google Scholar 

  14. For recent reviews, see for instance J.M. Richard: Recent developments in heavy quark spectroscopy talk given at “Rencontre de Moriond”, March 1984 (to be published); A. Martin: 1983 Cargèse Institute proceedings (Plenum Press, to appear); S. Ono: Quarkonia, Lectures at the XXIII Cracow School of Theoretical Physics, Zakopane (1983), CERN preprint TH-3679

  15. J.M. Richard: Phys. Lett.100B, 515 (1981)

    Google Scholar 

  16. J.M. Richard, P. Taxil: Ground state baryons in the nonrelativistic quark model Marseille preprint CPT-83/PE 1476 (1983) (to be published)

  17. R.K. Bhaduri, L.E. Cohler, Y. Nogami: Nuovo Cimento65A, 376 (1981); S.N. Jena: Phys. Rev.D 28, 2326 (1983)

    Google Scholar 

  18. F. Schöberl: Z. Phys. C — Particles and Fields15, 261 (1982)

    Google Scholar 

  19. “On passe sa vie à romancer les motifs et à simplifier les faits”, Boris Vian, (free translation “One spends one's time romanticizing motivations and simplifying facts”)

  20. G.'t Hooft: Nucl. Phys.B 75, 461 (1975)

    Google Scholar 

  21. G. Preparata: Phys. Lett.B 102, 327 (1981);B 108, 187 (1982); Nuovo Cimento A,66, 205 (1981); J.L. Basdevant, G. Preparata: Nuovo Cimento A,67, 19 (1982)

    Google Scholar 

  22. A.J. Hanson, R.D. Peccei, M.K. Prasad: Nucl. Phys.B121, 477 (1977), and further references therein

    Google Scholar 

  23. D.P. Stanley, D. Robson: Phys. Rev.D21, 3180 (1980)

    Google Scholar 

  24. J. Carlson, J. Kogut, V.R. Pandharipande: Phys. Rev.D27, 233 (1983), and further references therein

    Google Scholar 

  25. N. Isgur: in New flavours and hadron spectroscopy. proc. of the XVI Rencontre de Moriond, p. 247. J. Tran Thanh Van ed. Gif sur Yvette: Frontières 1981

    Google Scholar 

  26. S. Godfrey, N. Isgur: Mesons with chromodynamics. Toronto preprint (1984)

  27. Attempts have also been made with a Klein-Gordon type equation and a hamiltonian which is unbounded from below, see e.g. J.S. Kang, H.J. Schnitzer: Phys. Rev.D12, 841 (1975); H.J. Schnitzer; Preprint BRX-TH-171 (1984)

    Google Scholar 

  28. J.L. Basdevant, S. Boukraa: Semi-relativistic quark-antiquark potential models. Annales de Physique (to be published)

  29. Review of Particle Properties, April 1984 Edition, Rev. of Mod. Phys. Vol. 56, No 2 Part 2, April 1984

  30. N.I. Muskhelishvili, “Singular Integral Equations”, (North Holland, Amsterdam, 1958), and further references therein

    Google Scholar 

  31. See for instance A. Robinson and J.A. Laurmann, “Wing Theory”, (Cambridge University Press, 1958), p. 193, and K. Karamchetti, “Principles of Ideal Fluid Dynamics”, (New-York, N.Y., 1966)

  32. I.W. Herbst: Comm. Math. Phys.53, 285 (1977)

    Google Scholar 

  33. J.L. Basdevant and G. Preparata, “Relativistic Quarkonium Model”, to be published in the Proceedings of the Lisbon International Conference on High Energy Physics 1981

  34. P. Cea, P. Colangelo, G. Nardulli, G. Paiano, G. Preparata: Phys. Rev.D26, 1157 (1982); P. Cea, G. Nardulli and G. Paiano: Phys. Rev.D28, 2291 (1983); G. Paiano, Nuovo Cim.70A, 339 (1982); P. Cea, G. Nardulli and G. Paiano: Z. Phys. C.19, 321 (1983)

    Google Scholar 

  35. J.L. Basdevant, G. Preparata: unpublished

  36. D. Olivier: Thesis (Paris, 1983), unpublished

  37. The “universal” confining potential shown in Fig. 12 of [25] is easily seen to be too low by ∼400 MeV to reproduce the spectra given in the paper. Furthermore the r.m.s. radii shown in that figure are incorrect

  38. M. Bander, D. Silvermann, B. Klima, U. Maor: Phys. Rev.D29, 2038 (1984); B. Klima, U. Maor: DESY preprint 84-029 (1984)

    Google Scholar 

  39. H. Grosse, A. Martin: Phys. Lett.134B, 368 (1984)

    Google Scholar 

  40. One of us (J.L.B.) is indebted to F. Wagner for a useful remark on this point

  41. A. De Rùjula, H. Georgi, S.L. Glashow: Phys. Rev.D12, 147 (1975)

    Google Scholar 

  42. J.L. Basdevant, P. Colangelo, G. Preparata: Nuovo Cimento71A, 445 (1982)

    Google Scholar 

  43. P. Castorina et al.: Phys. Lett.115B, 487 (1982)

    Google Scholar 

  44. K. Heikkilä, N.A. Törnqvist, S. Ono: Phys. Rev.D29, 110 (1984), and further references therein

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Laboratoire associé au CNRS no 280

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basdevant, J.L., Boukraa, S. Successes and difficulties of unified quark-antiquark potential models. Z. Phys. C - Particles and Fields 28, 413–426 (1985). https://doi.org/10.1007/BF01413604

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01413604

Keywords

Navigation