Skip to main content
Log in

Current state of the investigation of superallowed Fermiβ decays

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

Nuclear Structure: Superallowed Fermiβ transitions; derivation of the effective vector (Gv) and induced scalar (f s) coupling constants from experimental data.

At the present time, the crucial point in a systematic study of superallowed 0+-0+ β transitions is the evaluation of the isospin impurity correctionδ c. In the literature,δ c is decomposed into two parts,δ c1 and δc2. Several estimates ofδ c1 have been published, while only one is available forδ c2. We analyze the compatibility of the different estimates ofδ c1 with the most recent surveys of experimental data. The simplest evaluation ofδ c1 reported some years ago by Damgaard is found to yield the most satisfactory ℱt values; these provide reliable values of the effective vector coupling constantG v [e.g.,G v=(1.41242+0.00023)×10−49 ergcm3]. These values are in excellent agreement with a recent valueG v=(1.41248+0.00044)×10−49 erg cm3 obtained by Wilkinson on the basis of a phenomenologic approach toδ c. Conversely, the most recent and detailed parentageexpansion approaches toδ c1 lead toℱt values which increase with Z, showing pronounced slopes. This fact might be due to a relative overestimation ofδ c1 for the lighter nuclei. Using the ℱt values calculated withδ c1 as reported by Damgaard, we evaluate the coupling constant for the induced scalar interaction following a procedure described in a previous paper. The mean of such values isf s/f v=(−0.17±0.80)×10−3. In addition, we develop an alternative way of determining a limit forf s/f v using the phenomenological approach toδ c suggested by Wilkinson. This new procedure yieldsf s/f v=(−0.16±0.87)×10−3, a result which is in excellent agreement with that obtained using the former method; both values are consistent with a value of zero, supporting the conserved vector current theory. The better accuracy of the experimental data makes it possible to reduce by a factor of two the limit established in a previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blin-Stoyle, R.J.: Fundamental interactions and the nucleus. Amsterdam: North-Holland 1973

    Google Scholar 

  2. Wilkinson, D.H.: Nature (London)257, 189 (1975)

    Google Scholar 

  3. Hardy, J.C., Towner, I.S.: Nucl. Phys. A254, 221 (1975)

    Google Scholar 

  4. Raman, S., Walkiewicz, T.A., Behrens, H.: At. Data Nucl. Data Tables16, 451 (1975)

    Google Scholar 

  5. Szybisz, L., Davidson, J., Silbergleit, V.: Nucl. Phys. A282, 435 (1977)

    Google Scholar 

  6. Szybisz, L.: Proc. Int. Conf. Nucl. Structure, Tokyo (5–10 September 1977), pp. 795; Z. Physik A285, 223 (1978)

  7. Behrens, H., Bühring, W.: Nucl. Phys. A162, 111 (1971)

    Google Scholar 

  8. Behrens, H.: Kernforschungszentrum Karlsruhe Report, KFK No. 1840 (1973)

  9. Damgaard, J.: Nucl. Phys. A130, 233 (1969)

    Google Scholar 

  10. Fayans, S.A.: Phys. Lett.37 B, 155 (1971)

    Google Scholar 

  11. Lane, A.M., Mekjian, A.Z.: Advances in nuclear physics, Vol. 7, pp. 97, Vogt, E., Baranger, M. (eds.) New York: Plenum Press 1973; and private communication quoted in [13]

    Google Scholar 

  12. Towner, I.S., Hardy, J.C., Harvey, M.: Nucl. Phys. A284, 269 (1977)

    Google Scholar 

  13. Wilkinson, D.H.: Phys. Lett.65 B, 9 (1976)

    Google Scholar 

  14. Towner, I.S., Hardy, J.C.: Nucl. Phys. A205, 33 (1973)

    Google Scholar 

  15. Wilkinson, D.H., Alburger, D.E.: Phys. Rev. C13, 2517 (1976)

    Google Scholar 

  16. Wilkinson, D.H.: Phys. Lett.67 B, 13 (1977)

    Google Scholar 

  17. Wilkinson, D.H., Gallmann, A., Alburger, D.E.: Phys. Rev. C18, 401 (1978)

    Google Scholar 

  18. Behrends, R.E., Sirlin, A.: Phys. Rev. Lett.4, 186 (1960)

    Google Scholar 

  19. Ademollo, M., Gatto, R.: Phys. Rev. Lett.13, 264 (1964)

    Google Scholar 

  20. Vonach, H., Glässel, P., Huenges, E., Maier-Komor, P., Rösier, H., Scheerer, H.J., Paul, H., Semrad, D.: Nucl. Phys. A278, 189 (1977)

    Google Scholar 

  21. James, F., Roos, M.: CERN Computer 6000 series, Program library D506

  22. Towner, I.S., Hardy, J.C.: Phys. Lett.73 B, 20 (1978)

    Google Scholar 

  23. Squier, G.T.A., Burcham, W.E., Hoath, S.D., Freeman, J.M., Barker, P.H., Petty, R.J.: Phys. Lett.65 B, 122 (1976)

    Google Scholar 

  24. Alburger, D.E., Wilkinson, D.H.: Phys. Rev. C15, 2174 (1977)

    Google Scholar 

  25. Hardy, J.C., Andrews, H.R., Geiger, J.S., Graham, R.L., Macdonald, J.A., Schmeing, H.: Phys. Rev. Lett.33, 1647 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Member of the Scientific Research Career of the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szybisz, L. Current state of the investigation of superallowed Fermiβ decays. Z Physik A 292, 49–56 (1979). https://doi.org/10.1007/BF01434629

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01434629

Keywords

Navigation