Skip to main content
Log in

Improved correlation of film condensation data based on a more rigorous application of similarity parameters

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

It is shown that a most consistent application of similarity parameters reduces the “random error” of experimental results in film condensation by 90%, in extreme situations even more. On the basis of physical considerations a correlation of data is presented which shows the Nusselt number as a function not only of the Reynolds number but also in certain ranges of the Prandtl and Weber number. Although the latter parameters varied only moderately in the experiments presented here the general idea is supported clearly. Further experiments will have to provide for quantitatively more reliable results.

Zusammenfassung

Es wird gezeigt, wie man bei möglichst konsequenter Anwendung der Ähnlichkeitsmechanik die durch die „Willkür“ gegebene Streuung der Me\ergebnisse auf ein Zehntel — bei besonderen ZustÄnden auch noch viel weniger — derjenigen bei üblicher Darstellung reduzieren kann. Dabei mu\ allerdings neben dem Einflu\ der Reynoldszahl auf den WÄrmeübergang auch gebietsweise der der Prandtlzahl und Weberzahl berücksichtigt werden. Dies ist vorlÄufig in relativ so engen Bereichen der beiden letztgenannten Kennzahlen geschehen, da\ noch keine semiempirische Gebrauchsformeln hergeleitet werden können. Versuche zur Erweiterung der Kennzahlengebiete sind im Gange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g:

acceleration

Hx, H:

variable total height of vertical cooling surface

Ko:

condensation parameter (see Eq. (8b))

m:

condensate mass flow rate per unit width of cooling surface at the lower tube end

Nu, NuB, Nupr :

reduced Nusselt numbers defined by

NuWe, NuWePr :

Eqs. (7, 9, 15, 20 and 21)

Pr:

Prandtl number, using ηm from Eq. (2)

r:

total enthalpy difference between entering vapour and leaving condensate

\(\dot Q, \dot Q_{cr}\) :

total heat flux, partial heat flux transmitted up to Hcr

\(\operatorname{Re} = \frac{{w\delta }}{{v_m }} = \dot m/\eta _m\) :

condensate Reynolds number at lower tube end

TS :

saturation temperature of vapour

TW :

average temperature of cooling surface

TKA :

adiabatic mixing temperature of leaving condensate

TKWE, TKWA :

average temperature of entering, leaving cooling water

δ T=TS− TW :

driving temperature difference for heat transfer

w, w′:

average condensate velocity at the lower tube edge and characteristic velocity from Brauer [9]

\(We_{cr} = \left( {\frac{{\operatorname{Re} _{cr}^5 }}{3}} \right)^{1/3} \left( {\frac{{g\rho ^3 v_m^4 }}{{\sigma ^3 }}} \right)^{1/3}\) :

critical Weber number

We *cr =(Wecr)−1 :

critical Weber number

aKW :

heat transfer coefficient of cooling water based on the inside tube surface

a :

condensation heat transfer coefficient averaged over the entire tube length

λ, ρ, η, Ν :

thermal conductivity, density, dynamic and kinematic viscosity of condensate at (TS + TW)/2

δ, δx :

film thickness at the lower end of tube, local film thickness, all averaged with respect to time and width

σ :

interface tension condensate-vapour at T=TS

cr:

for quantities in laminar flow regime related to the cross-section just before transition from laminar to turbulent flow

m:

average according to Eqs. (2) and (3)

w, S:

for quantities at wall, saturation temperature

x:

variable quantity

1, 2:

with respect to first, second condenser length

References

  1. Nusselt, W.: Die OberflÄchenkondensation des Wasserdampfes. Z. VDI 60 (1916) 541/546.

    Google Scholar 

  2. Monrad, C. C., Badger, W. L.: The Condensation of Vapours. Ind. Eng. Chem. Vol. 22 (1930) 1103.

    Google Scholar 

  3. Kirkbridge, C. G.: Heat Transfer by Condensing Vapour on Vertical Tubes. Trans. Am. Inst. Chem. Eng. 30 (1933) 171.

    Google Scholar 

  4. Colburn, A. P.: Condensation When a Portion of the Condensate is in Turbulent Motion. Trans. Am. Inst. Chem. Eng. 30 (1933) 187.

    Google Scholar 

  5. Grigull, U.: WÄrmeübergang bei der Kondensation mit turbulenter Wasserhaut. Forsch. Ing.-Wes. 13 (1942) 49.

    Google Scholar 

  6. Grigull, U.: WÄrmeübergang bei Fümkondensation. Forsch. Ing.-Wes. 18 (1952) 10.

    Google Scholar 

  7. Rohsenow, W. M., Webber, J. H., Ling, A. T.: Effect of Vapour Velocity on Laminar and Turbulent Film Condensation. Trans. ASME (1956) 1638.

  8. Kunz, H. R., Yerazunis, S.: An Analysis of Film Condensation, Film Evaporation and Single Phase Heat Transfer for Liquid Prandtl Numbers From 10−3 to 104. J. Heat Transfer, Aug. (1969) 413.

  9. Brauer, H.: WÄrmeübergang bei der Filmkondensation reiner DÄmpfe an lotrechten WÄnden. Forsch. Ing.-Wes. 24 (1958) Nr. 4, 105.

    Google Scholar 

  10. Gregorig, R.: Introduction to Heat Transfer. Internal Textbook, TU Berlin (1969).

  11. Gregorig, R.: WÄrmeaustausch und WÄrmeaustauscher. H. R. SauerlÄnder AG, Aarau u. Frankfurt a. M. (1973) 251.

    Google Scholar 

  12. Drew, T. B., in: Colburn, A. P.: Problems in Design and Research on Condensers of Vapours and Vapour Mixtures, ASME, General Discussion on Heat Transfer, London (1951).

    Google Scholar 

  13. Gregorig, R.: WÄrmeaustauscher. H. R. SauerlÄnder AG, Aarau u. Frankfurt a. M. (1959).

    Google Scholar 

  14. Roetzel, W.: Heat Transfer in Laminar Film Condensation; Local Film Resistance and Film Enthalpy Allowing for Variable Viscosity and Subcooling. WÄrme- und Stoffübertragung 6 (1973) 2, 127/132.

    Google Scholar 

  15. Baker, E. M., Kazmark, E. W., Stroebe, G. W.: Steam-Film Heat Transfer Coefficients for Vertical Tubes. Ind. Eng. Chem. 31 (1939) 214.

    Google Scholar 

  16. Badger, W. L., Monrad, C. C., Diamond, H. W.: Evaporation of Caustic Soda to High Concentrations by Means of Diphenyl Vapours. Ind. Eng. Chem. 22 (1930) 700.

    Google Scholar 

  17. Hufschmidt, W.: Determination of Local and Average Heat Transfer Coefficients in Tube Flow at High Heat Flux Densities. Int. J. Heat Mass Transfer 9 (1966) 6, 539/565.

    Google Scholar 

  18. Stephan, K.: WÄrmeübergang bei turbulenter Ringspaltströmung. Chem. Ing. Technik 34 (1962) 3, 207/212.

    Google Scholar 

  19. Ratiani, G. V., Shekriladse, I. G.: An Experimental Study of the Heat Exchange Process on Transition from Laminar to Turbulent Flow of the Film. (russ.) Teploenergetika 11 (1964) 3, 78/80. English Translation in Thermal Engineering II (1964).

    Google Scholar 

  20. Brauer, H.: Strömung und WÄrmeübergang in Rieselfilmen, VDI-Forschungsheft 457. Ausgabe B, 22 (1956).

    Google Scholar 

  21. Emmons, H. W., Bryson, A. E.: The Laminar-Turbulent Transition in a Boundary Layer, Pt. I. J. Aeronautical Sciences 18 (1951) 490, Pt. II: Proc. First U.S. Nat. Congr. Appl. Mech. (1952) 859/868.

    Google Scholar 

  22. Kirschbaum, E.: Neues zum WÄrmeübergang mit und ohne Änderung des Aggregatzustandes. Chem. Ing. Techn. 24 (1952) 7, 393/400.

    Google Scholar 

  23. Bankoff, S. G.: Stability of liquid flow down a heated inclined plane. Int. J. Heat Mass Trans. 14 (1971) 377/384.

    Google Scholar 

  24. Penev, V., Krylov, V. S., Boyadjiev, Ch., Vorotilin, V. P.: Wavy flow of thin liquid films. Int. J. Heat Mass Transfer 15 (1972) 1395/1406.

    Google Scholar 

  25. Schmidt, K.: Z. ges. KÄlteind. 44 (1937) 21/24, 43/49 und 65/70.

    Google Scholar 

  26. Hebbard, G. M., Badger, W. L.: Steam-Film Heat Transfer Coefficients for Vertical Tubes. Ind. Eng. Chem. 26 (1934) 4, 420/424.

    Google Scholar 

  27. Christ, A.: Dampfturbinen-VorwÄrmerrohre mit gerillter OberflÄche. Escher Wyss Mitteilungen 33 (1960) 1/2/3, 94/96.

    Google Scholar 

  28. Welch, J. F., Westwater, J. W.: Microscopic Study of Dropwise Condensation. Int. Developments in Heat Transfer (1961) 302/309.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reported on April 1973 at the meeting of the „Ausschu\ für WÄrme- und Stoffübertragung“ in Bad Mergentheim, Germany, by Helmer Rasche, Assistant at the Institut für Thermodynamik/WÄrmeübertragung der Technischen UniversitÄt Berlin, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorig, R., Kern, J. & Turek, K. Improved correlation of film condensation data based on a more rigorous application of similarity parameters. Wärme- und Stoffübertragung 7, 1–13 (1974). https://doi.org/10.1007/BF01438315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438315

Keywords

Navigation