Skip to main content
Log in

Validation of an accurate vibrating-wire densimeter: Density and viscosity of liquids over wide ranges of temperature and pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new vibrating-wire instrument for the meaasurement of the density of fluids at high pressures was described in a previous paper. The technique makes use of the buoyancy force on a solid sinker and detect, this force with a vibrating wire placed inside the measuring cell. Owing to the simple geometry of the oscillating element there exists a complete theoretical description of its resonance characteristics. enabling the calculation of the density of the fluid from their measurement. In the present paper a new method for the determination of the cell constants is outlined which permits the operation of the densimeter essentially as an absolute instrument. Furthermore. it is shown that the viscosity ol the fluid can be measured Simultaneously with the density. New results for three fluids are presented: for cyclohexane at temperatures from 298 to 348 K and pressures up to 40 MPa. for 2,2,4-trimethylpentane between 197 and 348 K at 0.1 MPa, and for 1,1,1,2-tetrafluoroethane from 197 to 298 K close to saturation. The sets of measurements where chosen with the intention of testing the performance of the apparatus. complementing previous work at higher pressures. The densities and viscosities measured exhibit the same accuracy for all of the three fluids over the entire temperature and pressure ranges and were obtained using the same set of cell parameters The precision of the densities is ±0.03% and their estimated accuracy is ±0.05%. File viscosities have a precision of ±0.6%, and an estimated accuracy of ±2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. H. Pádua, J. M. N. A. Fareleira, J. C. G. Calado, and W. A. Wakeham,Int. J. Thermophys. 15:229 (1994).

    Google Scholar 

  2. A. A. H. Pádua, Ph.D. thesis (Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, 1994).

  3. A. A. H. Pádua, J. M. N. A. Fareleira, J. C. G. Calado, and W. A. Wakeham (in press).

  4. T. Retsina, S. M. Richardson, and W. A. Wakeham,Appl. Sci. Res. 43:137 (1986).

    Google Scholar 

  5. S. Timoshenko, D. H. Young, and W. Weaver,Vibration Problems in Engineering, (Wiley, New York, 1974).

    Google Scholar 

  6. M. Dix, J. M. N. A. Fareleira, Y. Takaishi, and W. A. Wakeham,Int. J. Thermophys. 12:357 (1991).

    Google Scholar 

  7. I. C. Main,Vibrations and Waves in Physics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  8. K. L. Bett, A. M. F. Palavra, T. Retsina, S. M. Richardson, and W. A. Wakeham,Int. J. Thermophys. 10:871 (1989).

    Google Scholar 

  9. C. M. B. P. Oliveira. Ph.D. thesis (Imperial College of Science, Technology and Medicine, London, 1991).

  10. M. J. Assael, C. M. B. P. Oliveira, M. Papadaki, and W. A. Wakeham,Int. J. Thermophys. 13:593 (1992).

    Google Scholar 

  11. A. H. Krall, J. C. Nieuwoudt, J. V. Sengers, and J. Kestin,Fluid Phase Equil. 36:2117 (1987).

    Google Scholar 

  12. G. Girard, in K. N. Marsh, ed.,Recommended Reference Materials for the Realization of Physicochemical Properties (IUPAC, Blackwell, Oxford, 1987), Chap. 2.

    Google Scholar 

  13. M. J. Assael, Y. Nagasaka, C. A. Nieto de Castro, R. Perkins, K. Ström, E. Vogel, and W. A. Wakeham,12th Symp. Thermophys. Prop., NIST, Boulder, CO (1994).

    Google Scholar 

  14. J. H. Dymond and R. Malhotra,Int. J. Thermophys. 9:941 (1988).

    Google Scholar 

  15. R. Malhotra and L. A. Woolf,Int. J. Thermophys. 11:1059 (1990).

    Google Scholar 

  16. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood,The Properties of Gases and Liquids (McGraw Hill, New York, 1977).

    Google Scholar 

  17. R. Tanaka, O. Kiyohara, P. J. D'Arcy, and G. C. Benson,Can. J. Chem. 53:2262 (1975).

    Google Scholar 

  18. Y. Tanaka, H. Hosokawa, H. Kubota, and T. Makita,Int. J. Thermophys. 12:245 (1991).

    Google Scholar 

  19. N. B. Vargaftik,Tables on Thermophysical Properties of Liquids and Gases (Wiley, New York, 1975).

    Google Scholar 

  20. J. H. Dymond, N. F. Glen, and J. D. Isdale,Int. J. Thermophys. 6:233 (1985).

    Google Scholar 

  21. R. Tillner-Ruth and H. D. Baehr,J. Phys. Chem. Ref. Data 23:657 (1994): EOS implemented by R. J. B. Craven, IUPAC Thermodynamic Tables Project Center, Department of Chemical Engineering, Imperial College. London. (1994).

    Google Scholar 

  22. R. S. Basu and D. P. Wilson.Int. J. Thermophys. 10:591 (1989).

    Google Scholar 

  23. Y. Maezawa, H. Sato, and K. Watanabe,J Chem. Eng. Data 35:225 (1990).

    Google Scholar 

  24. M. O. McLinden, J. S. Gallagher, L. A. Weber, G. Morrison, D. Ward, A. R. H. Goodwin, J. W. Schmidt, H. B. Chae, T. J. Bruno, J. F. Ely, and M. L. Huber,ASHRAE Trans. 95:263 (1989).

    Google Scholar 

  25. G. Morrison and D. K. Ward,Fluid Phase Equil. 62:62 (1991)

    Google Scholar 

  26. C. M. B. P. Oliveira and W. A. Wakeham,Int. J. Thermophys. 14:33 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pádua, A.A.H., Fareleira, J.M.N.A., Calado, J.C.G. et al. Validation of an accurate vibrating-wire densimeter: Density and viscosity of liquids over wide ranges of temperature and pressure. Int J Thermophys 17, 781–802 (1996). https://doi.org/10.1007/BF01439190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01439190

Key words

Navigation